python四个坐标点对图片区域最小外接矩形进行裁剪

在图像裁剪操作中,opencv和pillow两个库都具有相应的函数,但是这两个库中的函数仅仅能对与图片平行的矩形进行裁剪操作,如果想要对目标的最小外接矩形进行裁剪该如何操作呢?如下所示:

具体处理该问题的思路如下:

  • 计算最小外接矩形的四个点的坐标,旋转角度
  • 将原图像进行旋转,旋转角度为最小外接矩形的角度
  • 将四个点的坐标进行映射,求出被旋转后图像的四个点的坐标
  • 利用这四个点对图像进行裁剪

图像原图如下:

1 求出该区域的最小外接矩形,并且得到外接矩形的四个点的坐标和旋转角度。

rect = cv2.minAreaRect(self.contours[0])#rect为[(旋转中心x坐标,旋转中心y坐标),(矩形长,矩形宽),旋转角度]
box_origin = cv2.boxPoints(rect)#box_origin为[(x0,y0),(x1,y1),(x2,y2),(x3,y3)]

2 将原图像进行旋转,旋转角度为最小外接矩形的角度,由于防止旋转后目标区域在图像外面,所以我将图像大小扩大为原来的2倍。

M = cv2.getRotationMatrix2D(rect[0],rect[2],1)
dst = cv2.warpAffine(rotateimg,M,(2*rotateimg.shape[0],2*rotateimg.shape[1]))

3 将原四个点的坐标做映射,映射到旋转后的区域,得到新的四个点的坐标。

#逆时针旋转
def Nrotate(angle,valuex,valuey,pointx,pointy):
      angle = (angle/180)*math.pi
      valuex = np.array(valuex)
      valuey = np.array(valuey)
      nRotatex = (valuex-pointx)*math.cos(angle) - (valuey-pointy)*math.sin(angle) + pointx
      nRotatey = (valuex-pointx)*math.sin(angle) + (valuey-pointy)*math.cos(angle) + pointy
      return (nRotatex, nRotatey)
#顺时针旋转
def Srotate(angle,valuex,valuey,pointx,pointy):
      angle = (angle/180)*math.pi
      valuex = np.array(valuex)
      valuey = np.array(valuey)
      sRotatex = (valuex-pointx)*math.cos(angle) + (valuey-pointy)*math.sin(angle) + pointx
      sRotatey = (valuey-pointy)*math.cos(angle) - (valuex-pointx)*math.sin(angle) + pointy
      return (sRotatex,sRotatey)
#将四个点做映射
def rotatecordiate(angle,rectboxs,pointx,pointy):
      output = []
      for rectbox in rectboxs:
        if angle>0:
          output.append(Srotate(angle,rectbox[0],rectbox[1],pointx,pointy))
        else:
          output.append(Nrotate(-angle,rectbox[0],rectbox[1],pointx,pointy))
      return output
box = rotatecordiate(rect[2],box_origin,rect[0][0],rect[0][1])

4 利用四个点坐标进行裁剪,如2中图所示,图像经过旋转后已经变为和图片没有旋转角的图像,经过实验观察旋转后的坐标还是有细微差别,但误差已经在千分点甚至万分点左右,对我们裁剪造成的影响可以忽略不计。

def imagecrop(image,box):
      xs = [x[1] for x in box]
      ys = [x[0] for x in box]
      print(xs)
      print(min(xs),max(xs),min(ys),max(ys))
      cropimage = image[min(xs):max(xs),min(ys):max(ys)]
      print(cropimage.shape)
      cv2.imwrite('cropimage.png',cropimage)
      return cropimage
imagecrop(dst,np.int0(box))

到此,利用4个坐标点对图像进行裁剪操作已经完成。

到此这篇关于python四个坐标点对图片区域最小外接矩形进行裁剪的文章就介绍到这了,更多相关python 图片坐标裁剪内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python实现对图片进行旋转,放缩,裁剪的功能

    先说明下,我这是对某个目录下的图片名称进行操作,该目录下的图片名称为1.jpg,2.jpg.....这样类似的图片名. 1.旋转 # -*-coding:utf-8-*- from PIL import Image def rotateimg(inputimg,outimg): im = Image.open(inputimg) # 图片的宽度和高度 img_size = im.size print("图片宽度和高度分别是{}".format(img_size)) # 旋转图片 # 左

  • python实现自动网页截图并裁剪图片

    本文实例为大家分享了python自动网页截图并裁剪图片的具体代码,供大家参考,具体内容如下 代码: # coding=utf-8 import time from selenium import webdriver from selenium.webdriver.chrome.options import Options from PIL import Image import os all_urls = ['http:/****edit'] def login(): chrome_option

  • OpenCV Python实现图像指定区域裁剪

    在工作中.在做数据集时,需要对图片进行处理,照相的图片我们只需要特定的部分,所以就想到裁剪一种所需的部分.当然若是图片有规律可循则使用opencv对其进行膨胀腐蚀等操作.这样更精准一些. 一.指定图像位置的裁剪处理 import os import cv2 # 遍历指定目录,显示目录下的所有文件名 def CropImage4File(filepath,destpath): pathDir = os.listdir(filepath) # 列出文件路径中的所有路径或文件 for allDir i

  • Python图片裁剪实例代码(如头像裁剪)

    今天就来说个常用的功能,图片裁剪,可用于头像裁剪啊之类的.用的还是我们之前用的哪个模块pillow 1. 安装pillow 用pip安装 pip install pillow 2. 图片裁剪 2.1 准备一张图片 2.2 我们使用的是Image中的crop(box)功能,它需要一个参数box,元组 类型,元组包括4个元素,如: (距离图片左边界距离x, 距离图片上边界距离y,距离图片左边界距离+裁剪框宽度x+w,距离图片上边界距离+裁剪框高度y+h) 如图:(x, y, x+w, y+h), x

  • Python实现图片裁剪的两种方式(Pillow和OpenCV)

    在这篇文章里我们聊一下Python实现图片裁剪的两种方式,一种利用了Pillow,还有一种利用了OpenCV.两种方式都需要简单的几行代码,这可能也就是现在Python那么流行的原因吧. 首先,我们有一张原始图片,如下图所示: 原始图片 然后,我们利用OpenCV对其进行裁剪,代码如下所示: import cv2 img = cv2.imread("./data/cut/thor.jpg") print(img.shape) cropped = img[0:128, 0:512] #

  • python opencv对图像进行旋转且不裁剪图片的实现方法

    最近在做深度学习时需要用到图像处理相关的操作,在度娘上找到的图片旋转方法千篇一律,旋转完成的图片都不是原始大小,很苦恼,于是google到歪果仁的网站扒拉了一个方法,亲测好用,再次嫌弃天下文章一大抄的现象,虽然我也是抄歪果仁的. 废话不多说了,直接贴代码了. def rotate_bound(image, angle): # grab the dimensions of the image and then determine the # center (h, w) = image.shape[

  • python通过opencv实现图片裁剪原理解析

    这篇文章主要介绍了python通过opencv实现图片裁剪原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 图像裁剪的基本概念 : 图像裁剪是指将图像中我们想要的研究区以外的区域去除,经常是按照行政区划或研究区域的边界对图像进行裁剪.例如,一张500×400的图像,我们只想要中间的250×200的区域,就可以使用图像裁剪将四周的区域去除. 在实际开发工作中,我们经常需要对图像进行分幅裁剪,按照ERDAS实际图像分幅裁剪的过程,可以将图像分

  • python四个坐标点对图片区域最小外接矩形进行裁剪

    在图像裁剪操作中,opencv和pillow两个库都具有相应的函数,但是这两个库中的函数仅仅能对与图片平行的矩形进行裁剪操作,如果想要对目标的最小外接矩形进行裁剪该如何操作呢?如下所示: 具体处理该问题的思路如下: 计算最小外接矩形的四个点的坐标,旋转角度 将原图像进行旋转,旋转角度为最小外接矩形的角度 将四个点的坐标进行映射,求出被旋转后图像的四个点的坐标 利用这四个点对图像进行裁剪 图像原图如下: 1 求出该区域的最小外接矩形,并且得到外接矩形的四个点的坐标和旋转角度. rect = cv2

  • Python实现图片查找轮廓、多边形拟合、最小外接矩形代码

    1.概述 经常用到轮廓查找和多边形拟合等opencv操作,因此记录以备后续使用.本文代码中的阈值条件对图片没有实际意义,仅仅是为了测试. 原图为: 2.测试代码: import cv2 import numpy as np img = cv2.imread('/home/yasin/coffe.jpg') img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) _, contours, hierarchy = cv2.findContours(img_g

  • python3+openCV 获取图片中文本区域的最小外接矩形实例

    我就废话不多说了,大家还是直接看代码吧! print("thresh =",thresh) coords = np.column_stack(np.where(thresh > 0))//获取thresh二值灰度图片中的白色文字区域的点 print("coords =",coords) min_rect = cv2.minAreaRect(coords)//由点集获取最小矩形(包含中心坐标点.宽和高.偏转角度) print("min_rec =&qu

  • python opencv minAreaRect 生成最小外接矩形的方法

    使用python opencv返回点集cnt的最小外接矩形,所用函数为 cv2.minAreaRect(cnt) ,cnt是点集数组或向量(里面存放的是点的坐标),并且这个点集不定个数. 举例说明:画一个任意四边形(任意多边形都可以)的最小外接矩形,那么点集 cnt 存放的就是该四边形的4个顶点坐标(点集里面有4个点) cnt = np.array([[x1,y1],[x2,y2],[x3,y3],[x4,y4]]) # 必须是array数组的形式 rect = cv2.minAreaRect(

  • python+opencv图像分割实现分割不规则ROI区域方法汇总

    在图像分割领域,一个重要任务便是分割出感兴趣(ROI)区域.如果是简易的矩形ROI区域其实是非常容易分割的,opencv的官方python教程里也有教到最简易的矩形ROI分割(剪裁),其本质是多维数组(矩阵)的切片.但是现实情况中,ROI是不规则的多边形,也可能是曲线边界,那么该如何分割出来呢?下面总结几种思路. 可能只提供核心部分的代码示例,具体应用要结合你自己的项目来修正. 一.已知边界坐标,直接画出多边形 例:最基础的画个四边形 # 定义四个顶点坐标 pts = np.array([[10

  • Python实现将照片变成卡通图片的方法【基于opencv】

    本文实例讲述了Python实现将照片变成卡通图片的方法.分享给大家供大家参考,具体如下: 之前的文章介绍了使用Photoshop将照片变成卡通图片,今次介绍用代码来实现这项任务,可以就此探查各种滤镜的内部机制. 制作环境:Windows10,Python2.7,Anaconda 任务描述:将D盘某文件夹中的所有图片使用代码进行卡通化,然后保存到另一文件夹中. 如前文所述,卡通化的关键是强化边缘与减少色彩,所以使用Photoshop进行卡通化的时候就使用了照亮边缘和干笔画的滤镜来处理.使用代码处理

  • Python图像处理之图像融合与ROI区域绘制详解

    目录 一.图像融合 二.图像ROI区域定位 三.图像属性 (1)shape (2)size (3)dtype 四.图像通道分离及合并 (1)split()函数 (2)merge()函数 五.图像类型转换 六.总结 一.图像融合 图像融合通常是指多张图像的信息进行融合,从而获得信息更丰富的结果,能够帮助人们观察或计算机处理.图5-1是将两张不清晰的图像融合得到更清晰的效果图. 图像融合是在图像加法的基础上增加了系数和亮度调节量,它与图像的主要区别如下[1-3]: 图像加法:目标图像 = 图像1 +

  • python openCV实现摄像头获取人脸图片

    本文实例为大家分享了python openCV实现摄像头获取人脸图片的具体代码,供大家参考,具体内容如下 在机器学习中,训练模型需要大量图片,通过openCV中的库可以快捷的调用摄像头,截取图片,可以快速的获取大量人脸图片 需要注意将CascadeClassifier方法中的地址改为自己包cv2包下面的文件 import cv2 def load_img(path,name,mun = 100,add_with = 0): # 获取人脸识别模型 # # #以下路径需要更改为自己环境下xml文件

  • python 爬取英雄联盟皮肤图片

    一开始都是先去<英雄联盟>官网找到英雄及皮肤图片的网址: URL = r'https://lol.qq.com/data/info-heros.shtml' 从上面网址可以看到所有英雄都在,按下F12查看源代码,发现英雄及皮肤图片并没有直接给出,而是隐藏在JS文件中.这时候需要点开Network,找到js窗口,刷新网页,就看到一个champion.js的选项,点击可以看到一个字典--里面就包含了所有英雄的名字(英文)以及对应的编号(如下图). 但是只有英雄的名字(英文)以及对应的编号并不能找到

  • python环境下OPenCV处理视频流局部区域像素值

    参考我之前写的处理图片的文章:Python+OpenCV实现[图片]局部区域像素值处理(改进版) 开发环境:Python3.6.0 + OpenCV3.2.0 任务目标:摄像头采集图像(例如:480640),并对视频流每一帧(灰度图)特定矩形区域(48030)像素值进行行求和,得到一个480*1的数组,用这480个数据绘制条形图,即在逐帧采集视频流并处理后"实时"显示采集到的视频,并"实时"更新条形图.工作流程如下图: 源码: # -*- coding:utf-8

随机推荐