python matplotlib拟合直线的实现

这篇文章主要介绍了python matplotlib拟合直线的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

代码如下

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']
def linear_regression(x, y):
  N = len(x)
  sumx = sum(x)
  sumy = sum(y)
  sumx2 = sum(x ** 2)
  sumxy = sum(x * y)
  A = np.mat([[N, sumx], [sumx, sumx2]])
  b = np.array([sumy, sumxy])
  return np.linalg.solve(A, b)

#单臂
#修改数据1:
X1=np.array([0,20,40,60,80,100,120,140,160,180,200])
Y1=np.array([0,0.02,0.06,0.1,0.13,0.16,0.19,0.22,0.245,0.278,0.3])

#半桥
#修改数据2:
X2=np.array([0,20,40,60,80,100,120,140,160,180,200])
Y2=np.array([0,0.057,0.118,0.185,0.245,0.308,0.376,0.425,0.488,0.544,0.58])

a0, a1 = linear_regression(X1, Y1)
# 生成拟合直线的绘制点
_X1 = [0, 200]
_Y1 = [a0 + a1 * x for x in _X1]

a0, a1 = linear_regression(X2, Y2)
# 生成拟合直线的绘制点
_X2 = [0, 200]
_Y2 = [a0 + a1 * x for x in _X1]
#显示图像
plt.plot( X1, Y1, 'ro', linewidth=2,label="单臂电桥")
plt.plot(_X1, _Y1, 'b',linewidth=2,label='单臂电桥',color='C0')
plt.plot( X2, Y2, 'g^', linewidth=2,label='半桥')
plt.plot(_X2, _Y2, 'b', linewidth=2,label='半桥',color='C1')
plt.xlabel('weight/g')
plt.ylabel('voltage/v')
plt.legend()
plt.show()

图例

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python matplotlib生成图片背景透明的示例代码

    使用matplotlib生成图片,想要背景透明,而且图例部分也显示透明效果,找到了大概的设置方法,特此记录. # coding=utf-8 # matplotlib背景透明示例图 # python 3.5 import numpy as np import matplotlib.pyplot as plt from pylab import mpl import scipy.stats as stats # 设置中文字体 mpl.rcParams['font.sans-serif'] = ['S

  • python调用Matplotlib绘制分布点图

    Python调用Matplotlib代码绘制分布点,供大家参考,具体内容如下 绘制点图的目的 Matplotlib简介 代码 截图 1.绘制点图的目的 我们实验室正在做关于人脸识别的项目,其中在人脸检测后,会有些误检的图片,但是其中就有很多不符合的.很明显的是从图片大小,就可以过滤掉一部分.老大交给我的工作,就是通过绘制图片width,height的分布图,来找到一个合理的阈值. 2.Matlablib简介 Matplotlib是一个Python的图形框架 下面是官网的例子 Matplotlib

  • python使用matplotlib绘制雷达图

    本文实例为大家分享了python使用matplotlib绘制雷达图的具体代码,供大家参考,具体内容如下 示例代码: # encoding: utf-8 import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['KaiTi'] # 显示中文 labels = np.array([u'总场次', u'吃鸡数', u'前十数',u'总击杀']) #

  • python matplotlib折线图样式实现过程

    这篇文章主要介绍了python matplotlib折线图样式实现过程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一:简单的折线图 import matplotlib.pyplot as plt #支持中文显示 plt.rcParams["font.sans-serif"]=["SimHei"] #x,y数据 x_data = [1,2,3,4,5] y_data = [10,30,20,25,28] plt.

  • Python使用matplotlib 画矩形的三种方式分析

    本文实例讲述了Python使用matplotlib 画矩形的三种方式.分享给大家供大家参考,具体如下: 假设矩形两点坐标如下,分别为:x1, y1, x2, y2 cat_dict['bbox'][i] = (min_row, min_col, max_row, max_col) 1. plt.plot(x,y) 这种方式画的矩形 因为边距的问题 会放缩 plt.plot([cat_dict['bbox'][i][1], cat_dict['bbox'][i][3], cat_dict['bbo

  • python使用PIL和matplotlib获取图片像素点并合并解析

    python 版本 3.x 首先安装 PIL 由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Python 3.x,又加入了许多新特性,因此,我们可以直接安装使用Pillow. 所以 安装: pip install pillow 获取像素点 import numpy as np from PIL import Image img = Image.open("./b.png").convert('RGBA'

  • python使用Matplotlib改变坐标轴的默认位置

    使用Matplotlib绘制的图表的默认坐标轴是在左下角的,这样对于一些函数的显示不是非常方便,要改变坐标轴的默认显示方式主要要使用gca()方法 plt.gca()表示 Get current axis,使用这个方法我们可以获得整张图表的坐标对象,这样我们就可以对坐标进行处理了,像移动位置,设置颜色之类的,类似plt.gcf()这个是 Get current figure 即获得当前图表的图像,对图像进行处理. 我们可以定义一个变量接收这个值: ax = plt.gca() 接下来还要了解一个

  • python库matplotlib绘制坐标图

    很多时候我们数据处理的时候要画坐标图,下面我用第三方库matplotlib以及scipy绘制光滑的曲线图 需要安装的库有 matplotlib,scipy, numpy import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.axisartist.axislines import Subplot from scipy import interpolate def sommth_plot(x_arr, y_arr):

  • python matplotlib饼状图参数及用法解析

    这篇文章主要介绍了python matplotlib饼状图参数及用法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在python的matplotlib画图函数中,饼状图的函数为pie pie函数参数解读 plt.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, star

  • python matplotlib拟合直线的实现

    这篇文章主要介绍了python matplotlib拟合直线的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.family'] = ['sans-serif'] plt.rcParams['font.sans-serif'] = ['SimHei'] def linear_regression

  • python  Matplotlib绘图直线,折线,曲线

    绘制直线图,确定x范围和y的范围 代码: import matplotlib.pyplot as plt import numpy as np xpoints = np.array([0, 6]) #0-6的范围 ypoints = np.array([0, 100]) #0-100的范围 plt.plot(xpoints, ypoints) plt.show() 绘制两个点的坐标,用实心圆来标记点 代码: import matplotlib.pyplot as plt import numpy

  • Python图像处理之直线和曲线的拟合与绘制【curve_fit()应用】

    本文实例讲述了Python图像处理之直线和曲线的拟合与绘制.分享给大家供大家参考,具体如下: 在数据处理和绘图中,我们通常会遇到直线或曲线的拟合问题,python中scipy模块的子模块optimize中提供了一个专门用于曲线拟合的函数curve_fit(). 下面通过示例来说明一下如何使用curve_fit()进行直线和曲线的拟合与绘制. 代码如下: # -*- coding:utf-8 -*- import numpy as np import matplotlib.pyplot as pl

  • python中Matplotlib绘制直线的实例代码

    说明 1.导入模块pyplot,并指定别名plt,以避免重复输入pyplot.模块化pyplot包含许多用于制作图表的功能. 2.将绘制的直线坐标传递给函数plot(). 3.通过函数plt.show()打开Matplotlib,显示所绘图形. 实例 import matplotlib.pyplot as plt #将(0,1)点和(2,4)连起来 plt.plot([0,2],[1,4]) plt.show() 相关实例扩展: 线型图 import matplotlib.pyplot as p

  • 使用Python matplotlib绘制简单的柱形图、折线图和直线图

    目录 介绍 1.柱形图 2.直线图 3.折线图 总结 介绍 Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件.它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式.这里将会探索 matplotlib 的常见用法. 1.柱形图 import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[5,7,4,3,1] #1. 确定柱状图数量,可以认为是x方向刻度和y方向刻度 color=['red','black','peru','orc

  • python matplotlib模块基本图形绘制方法小结【直线,曲线,直方图,饼图等】

    本文实例讲述了python matplotlib模块基本图形绘制方法.分享给大家供大家参考,具体如下: matplotlib模块是python中一个强大的绘图模块 安装 pip  install matplotlib 首先我们来画一个简单的图来感受它的神奇 import numpy as np import matplotlib.pyplot as plt import matplotlib zhfont1=matplotlib.font_manager.FontProperties(fname

  • Python数据拟合实现最小二乘法示例解析

    目录 线性拟合 高阶多项式 多自变量 指数函数 所谓最小二乘法,即通过对数据进行拟合,使得拟合值与样本值的方差最小. 线性拟合 这个表达式还是非常简单的. 对于有些情况,我们往往选取自然序列作为自变量,这个时候在求自变量的取值时可以用到一些初等数学的推论,对于 x ∈ [ m , n ] 的自然序列来说,有 #文件名core.py import numpy as np def leastSquare(x,y): if len(x)==2: #此时x为自然序列 sx = 0.5*(x[1]-x[0

  • Python matplotlib绘图可视化知识点整理(小结)

    无论你工作在什么项目上,IPython都是值得推荐的.利用ipython --pylab,可以进入PyLab模式,已经导入了matplotlib库与相关软件包(例如Numpy和Scipy),额可以直接使用相关库的功能. 本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 这样IPython配置为使用你所指定的matplotlib GUI后端(TK/wxPython/PyQt/Mac OS X native/GTK).对于大部分用户而言,默认的后端就已经够用了.Pylab模式

  • Python线性拟合实现函数与用法示例

    本文实例讲述了Python线性拟合实现函数与用法.分享给大家供大家参考,具体如下: 1. 参考别人写的: #-*- coding:utf-8 -*- import math import matplotlib.pyplot as plt def linefit(x , y): N = float(len(x)) sx,sy,sxx,syy,sxy=0,0,0,0,0 for i in range(0,int(N)): sx += x[i] sy += y[i] sxx += x[i]*x[i]

  • Python matplotlib画曲线例题解析

    这篇文章主要介绍了Python matplotlib画曲线例题解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 初学者,练习以下片段: 代码1:用 一元一次函数 画直线 import matplotlib.pyplot as plt import numpy as np x = np.linspace(-2, 2, 50) print(x) y = 2*x + 1 plt.plot(x, y) ax = plt.gca() ax.spines

随机推荐