对numpy中的where方法嵌套使用详解

如同for循环一样,numpy中的where方法可以实现嵌套功能。这是简化嵌套式矩阵逻辑的一个很好的方法。

假设有一个矩阵,需要把小于0的元素改成-1,大于0的元素改成1,而等于0的时候不做修改。

那么,对应的代码示范如下:

#!/usr/bin/python

import numpy as np

data = np.random.randn(4,5)
data1 =np.where(data > 0,1,
np.where(data <0,-1,0))
print("datavalue:")
print(data)
print("data1value:")
print(data1)

程序的执行结果如下:

In [3]: %runpython_exp04.py

data value:

[[-2.06262429 0.94548656 -0.29458562 0.82657 -1.08587439]
 [-0.67416161 0.77247191 0.60330603 0.73694198 -0.63761278]
 [ 0.24887356 -0.27086027 0.34312363 0.727303 0.72741593]
 [-0.48973095 -0.33185631 -1.23341695 0.13569267 2.06881178]]

data1 value:

[[-1 1 -1 1-1]
 [-1 1 1 1 -1]
 [ 1 -1 1 1 1]
 [-1 -1 -1 1 1]]

这种用法,不仅比单纯通过复合的循环遍历实现的代码更加简洁,而且在执行效率上有着很大的优势。很多时候,计算的向量化就是为了能够加速整个程序的执行速度。

以上这篇对numpy中的where方法嵌套使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 基于Python Numpy的数组array和矩阵matrix详解

    NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵

  • 对numpy中的where方法嵌套使用详解

    如同for循环一样,numpy中的where方法可以实现嵌套功能.这是简化嵌套式矩阵逻辑的一个很好的方法. 假设有一个矩阵,需要把小于0的元素改成-1,大于0的元素改成1,而等于0的时候不做修改. 那么,对应的代码示范如下: #!/usr/bin/python import numpy as np data = np.random.randn(4,5) data1 =np.where(data > 0,1, np.where(data <0,-1,0)) print("dataval

  • numpy中的ndarray方法和属性详解

    NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推.在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量.比如说,二维数组相当于是一个一维数组,而这个一维数组中每个元素又是一个一维数组.所以这个一维数组就是NumPy中的轴(axes),而轴的数量--秩,就是数组的维数. Numpy库中的矩阵模块为ndarray对象,有很多属性:T,data, dtype,flags,flat,imag,real,size, itemsize,nbyte

  • numpy中的converters和usecols用法详解

    目录 方法一:使用usecols 方法二:使用numpy 方法三:使用切片区间 总结: 用Python打开Excel数据,读取时需要将”学号“和“ID"转换成字符,以便后续操作 df = pd.read_excel(path, converters={'学号': str, 'ID': str}) 以下是我的经历来体会: 我在从Excel读入python的数据时,发现读出的是空值: import pandas as pd df=pd.read_excel("D:/Python/05Dat

  • java 正则,object中两个方法的使用(详解)

    正则: "."和"\" "."点儿,在正则表达式中表示任意一个字符. "\"在正则表达式中是转意字符,当我们需要描述一个已经被正则表达式使用的特殊字符时,我们就可以通过使用"\"将其转变为原本的意思. "\"在正则表达式中也有一些预定义的特殊内容: \d:表示任意一个数字 \w:表示任意一个单词字符(只能是 数字,字母,下划线) \s:表示任意一个空白字符(\t \r \n \f \x0

  • 关于numpy中np.nonzero()函数用法的详解

    np.nonzero函数是numpy中用于得到数组array中非零元素的位置(数组索引)的函数.一般来说,通过help(np.nonzero)能够查看到该函数的解析与例程.但是,由于例程为英文缩写,阅读起来还是很费劲,因此,本文将其英文解释翻译成中文,便于理解. 解释 nonzero(a) 返回数组a中非零元素的索引值数组. (1)只有a中非零元素才会有索引值,那些零值元素没有索引值: (2)返回的索引值数组是一个2维tuple数组,该tuple数组中包含一维的array数组.其中,一维arra

  • 对numpy中array和asarray的区别详解

    array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 举例说明: import numpy as np #example 1: data1=[[1,1,1],[1,1,1],[1,1,1]] arr2=np.array(data1) arr3=np.asarray(data1) data1[1][1]=2 print 'data1:\n',data1 print 'ar

  • 在Python3 numpy中mean和average的区别详解

    mean和average都是计算均值的函数,在不指定权重的时候average和mean是一样的.指定权重后,average可以计算一维的加权平均值. 具体如下: import numpy as np a = np.array([np.random.randint(0, 20, 5), np.random.randint(0, 20, 5)]) print('原始数据\n', a) print('mean函数'.center(20, '*')) print('对所有数据计算\n', a.mean(

  • 对numpy中的transpose和swapaxes函数详解

    transpose() 这个函数如果括号内不带参数,就相当于转置,和.T效果一样,而今天主要来讲解其带参数. 我们看如下一个numpy的数组: `arr=np.arange(16).reshape((2,2,4)) arr= array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7]], [[ 8, 9, 10, 11], [12, 13, 14, 15]]]) ` 那么有: arr.transpose(2,1,0) array([[[ 0, 8], [ 4, 12]], [[ 1

  • 对numpy中的数组条件筛选功能详解

    在程序设计中,时常会遇到数据的唯一化.相同.相异信息的提取等工作,在格式化的向量存储矩阵中南,numpy能够提供比较不错的快速处理功能. 1,唯一化的实现: In [63]: data = np.array(['int','float','int','boolean','double','boolean']) In [64]: data Out[64]: array(['int', 'float', 'int', 'boolean', 'double', 'boolean'], dtype='|

  • 关于numpy中eye和identity的区别详解

    两个函数的原型为: np.identity(n, dtype=None) np.eye(N, M=None, k=0, dtype=<type 'float'>): np.identity只能创建方形矩阵 np.eye可以创建矩形矩阵,且k值可以调节,为1的对角线的位置偏离度,0居中,1向上偏离1,2偏离2,以此类推,-1向下偏离.值绝对值过大就偏离出去了,整个矩阵就全是0了. 以上这篇关于numpy中eye和identity的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希

随机推荐