解决Pytorch 训练与测试时爆显存(out of memory)的问题

Pytorch 训练时有时候会因为加载的东西过多而爆显存,有些时候这种情况还可以使用cuda的清理技术进行修整,当然如果模型实在太大,那也没办法。

使用torch.cuda.empty_cache()删除一些不需要的变量代码示例如下:

try:
  output = model(input)
except RuntimeError as exception:
  if "out of memory" in str(exception):
    print("WARNING: out of memory")
    if hasattr(torch.cuda, 'empty_cache'):
      torch.cuda.empty_cache()
  else:
    raise exception

测试的时候爆显存有可能是忘记设置no_grad, 示例代码如下:

  with torch.no_grad():
    for ii,(inputs,filelist) in tqdm(enumerate(test_loader), desc='predict'):
      if opt.use_gpu:
        inputs = inputs.cuda()
        if len(inputs.shape) < 4:
          inputs = inputs.unsqueeze(1)

      else:
        if len(inputs.shape) < 4:
          inputs = torch.transpose(inputs, 1, 2)
          inputs = inputs.unsqueeze(1)
 

以上这篇解决Pytorch 训练与测试时爆显存(out of memory)的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch 使用单个GPU与多个GPU进行训练与测试的方法

    如下所示: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")#第一行代码 model.to(device)#第二行代码 首先是上面两行代码放在读取数据之前. mytensor = my_tensor.to(device)#第三行代码 然后是第三行代码.这句代码的意思是将所有最开始读取数据时的tersor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上

  • pytorch使用指定GPU训练的实例

    本文适合多GPU的机器,并且每个用户需要单独使用GPU训练. 虽然pytorch提供了指定gpu的几种方式,但是使用不当的话会遇到out of memory的问题,主要是因为pytorch会在第0块gpu上初始化,并且会占用一定空间的显存.这种情况下,经常会出现指定的gpu明明是空闲的,但是因为第0块gpu被占满而无法运行,一直报out of memory错误. 解决方案如下: 指定环境变量,屏蔽第0块gpu CUDA_VISIBLE_DEVICES = 1 main.py 这句话表示只有第1块

  • 解决Pytorch 训练与测试时爆显存(out of memory)的问题

    Pytorch 训练时有时候会因为加载的东西过多而爆显存,有些时候这种情况还可以使用cuda的清理技术进行修整,当然如果模型实在太大,那也没办法. 使用torch.cuda.empty_cache()删除一些不需要的变量代码示例如下: try: output = model(input) except RuntimeError as exception: if "out of memory" in str(exception): print("WARNING: out of

  • 解决Pytorch训练过程中loss不下降的问题

    在使用Pytorch进行神经网络训练时,有时会遇到训练学习率不下降的问题.出现这种问题的可能原因有很多,包括学习率过小,数据没有进行Normalization等.不过除了这些常规的原因,还有一种难以发现的原因:在计算loss时数据维数不匹配. 下面是我的代码: loss_function = torch.nn.MSE_loss() optimizer.zero_grad() output = model(x_train) loss = loss_function(output, y_train)

  • 解决Pytorch修改预训练模型时遇到key不匹配的情况

    一.Pytorch修改预训练模型时遇到key不匹配 最近想着修改网络的预训练模型vgg.pth,但是发现当我加载预训练模型权重到新建的模型并保存之后. 在我使用新赋值的网络模型时出现了key不匹配的问题 #加载后保存(未修改网络) base_weights = torch.load(args.save_folder + args.basenet) ssd_net.vgg.load_state_dict(base_weights) torch.save(ssd_net.state_dict(),

  • 解决Pytorch在测试与训练过程中的验证结果不一致问题

    引言 今天在使用Pytorch导入此前保存的模型进行测试,在过程中发现输出的结果与验证结果差距甚大,经过排查后发现是forward与eval()顺序问题. 现象 此前的错误代码是 input_cpu = torch.ones((1, 2, 160, 160)) target_cpu =torch.ones((1, 2, 160, 160)) target_gpu, input_gpu = target_cpu.cuda(), input_cpu.cuda() model.set_input_2(

  • pytorch显存一直变大的解决方案

    在代码中添加以下两行可以解决: torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True 补充:pytorch训练过程显存一直增加的问题 之前遇到了爆显存的问题,卡了很久,试了很多方法,总算解决了. 总结下自己试过的几种方法: **1. 使用torch.cuda.empty_cache() 在每一个训练epoch后都添加这一行代码,可以让训练从较低显存的地方开始,但并不适用爆显存的问题,随着epoch的增加

  • 解决Pytorch中的神坑:关于model.eval的问题

    有时候使用Pytorch训练完模型,在测试数据上面得到的结果令人大跌眼镜. 这个时候需要检查一下定义的Model类中有没有 BN 或 Dropout 层,如果有任何一个存在 那么在测试之前需要加入一行代码: #model是实例化的模型对象 model = model.eval() 表示将模型转变为evaluation(测试)模式,这样就可以排除BN和Dropout对测试的干扰. 因为BN和Dropout在训练和测试时是不同的: 对于BN,训练时通常采用mini-batch,所以每一批中的mean

  • 详解Pytorch显存动态分配规律探索

    下面通过实验来探索Pytorch分配显存的方式. 实验显存到主存 我使用VSCode的jupyter来进行实验,首先只导入pytorch,代码如下: import torch 打开任务管理器查看主存与显存情况.情况分别如下: 在显存中创建1GB的张量,赋值给a,代码如下: a = torch.zeros([256,1024,1024],device= 'cpu') 查看主存与显存情况: 可以看到主存与显存都变大了,而且显存不止变大了1G,多出来的内存是pytorch运行所需的一些配置变量,我们这

  • 弄清Pytorch显存的分配机制

    对于显存不充足的炼丹研究者来说,弄清楚Pytorch显存的分配机制是很有必要的.下面直接通过实验来推出Pytorch显存的分配过程. 实验实验代码如下: import torch from torch import cuda x = torch.zeros([3,1024,1024,256],requires_grad=True,device='cuda') print("1", cuda.memory_allocated()/1024**2) y = 5 * x print(&quo

  • 解决pytorch多GPU训练保存的模型,在单GPU环境下加载出错问题

    背景 在公司用多卡训练模型,得到权值文件后保存,然后回到实验室,没有多卡的环境,用单卡训练,加载模型时出错,因为单卡机器上,没有使用DataParallel来加载模型,所以会出现加载错误. 原因 DataParallel包装的模型在保存时,权值参数前面会带有module字符,然而自己在单卡环境下,没有用DataParallel包装的模型权值参数不带module.本质上保存的权值文件是一个有序字典. 解决方法 1.在单卡环境下,用DataParallel包装模型. 2.自己重写Load函数,灵活.

  • 解决Pytorch半精度浮点型网络训练的问题

    用Pytorch1.0进行半精度浮点型网络训练需要注意下问题: 1.网络要在GPU上跑,模型和输入样本数据都要cuda().half() 2.模型参数转换为half型,不必索引到每层,直接model.cuda().half()即可 3.对于半精度模型,优化算法,Adam我在使用过程中,在某些参数的梯度为0的时候,更新权重后,梯度为零的权重变成了NAN,这非常奇怪,但是Adam算法对于全精度数据类型却没有这个问题. 另外,SGD算法对于半精度和全精度计算均没有问题. 还有一个问题是不知道是不是网络

随机推荐