pandas实现选取特定索引的行
如下所示:
>>> import numpy as np >>> import pandas as pd >>> index=np.array([2,4,6,8,10]) >>> data=np.array([3,5,7,9,11]) >>> data=pd.DataFrame({'num':data},index=index) >>> print(data) num 2 3 4 5 6 7 8 9 10 11 >>> select_index=index[index>5] >>> print(select_index) [ 6 8 10] >>> data['num'].loc[select_index] 6 7 8 9 10 11 Name: num, dtype: int32 >>>
注意,不能用iloc,iloc是将序列当作数组来访问,下标又会从0开始:
>>> data['num'].iloc[2:5] 6 7 8 9 10 11 Name: num, dtype: int32 >>> data['num'].iloc[[2,3,4]] 6 7 8 9 10 11 Name: num, dtype: int32 >>>
以上这篇pandas实现选取特定索引的行就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
您可能感兴趣的文章:
- pandas将DataFrame的列变成行索引的方法
相关推荐
-
pandas将DataFrame的列变成行索引的方法
pandas提供了set_index方法可以将DataFrame的列(多列)变成行索引,通过reset_index方法可以将层次化索引的级别会被转移到列里面. 1.DataFrame的set_index方法 data = pd.DataFrame(np.arange(1,10).reshape(3,3),index=["a","b","c"],columns=["A","B","C"])
-
pandas实现选取特定索引的行
如下所示: >>> import numpy as np >>> import pandas as pd >>> index=np.array([2,4,6,8,10]) >>> data=np.array([3,5,7,9,11]) >>> data=pd.DataFrame({'num':data},index=index) >>> print(data) num 2 3 4 5 6 7 8 9
-
pandas.DataFrame选取/排除特定行的方法
pandas.DataFrame选取特定行 使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列表方式传入,还可以传入字典,指定列进行筛选. >>> df = pd.DataFrame([['GD', 'GX', 'FJ'], ['SD', 'SX', 'BJ'], ['HN', 'HB', 'AH'], ['HEN', 'HEN', 'HL
-
python选取特定列 pandas iloc,loc,icol的使用详解(列切片及行切片)
df是一个dataframe,列名为A B C D 具体值如下: A B C D 0 ss 小红 8 1 aa 小明 d 4 f f 6 ak 小紫 7 dataframe里的属性是不定的,空值默认为NA. 一.选取标签为A和C的列,并且选完类型还是dataframe df = df.loc[:, ['A', 'C']] df = df.iloc[:, [0, 2]] 二.选取标签为C并且只取前两行,选完类型还是dataframe df = df.loc[0:2, ['A', 'C']] df
-
pandas.DataFrame删除/选取含有特定数值的行或列实例
1.删除/选取某列含有特殊数值的行 import pandas as pd import numpy as np a=np.array([[1,2,3],[4,5,6],[7,8,9]]) df1=pd.DataFrame(a,index=['row0','row1','row2'],columns=list('ABC')) print(df1) df2=df1.copy() #删除/选取某列含有特定数值的行 #df1=df1[df1['A'].isin([1])] #df1[df1['A'].
-
python中pandas.DataFrame排除特定行方法示例
前言 大家在使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,关于python中pandas.DataFrame的基本操作,大家可以查看这篇文章. pandas.DataFrame排除特定行 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列表方式传入,还可以传入字典,指定列进行筛选. 但是如果我们只想要所有内容中不包含特定行的内容,却并没有一个isnotin()方法.我今天的工作就遇到了这样的需
-
在pandas多重索引multiIndex中选定指定索引的行方法
在multiIndex中选定指定索引的行 我们在用pandas类似groupby来使用多重index时,有时想要对多个level中的某个index对应的行进行操作,就需要在dataframe中找到该index对应的行,在单层index中我们可以方便的使用df.loc[index]来选择,在多重Index中我们可以利用的类似的思路,然而其中也有一些小坑,记录如下. 1 index为有序的 1.1 创建测试数据 首先创建一个dataframe数据 df = pd.DataFrame({'class'
-
pandas取dataframe特定行列的实现方法
1.按列取.按索引/行取.按特定行列取 import numpy as np from pandas import DataFrame import pandas as pd df=DataFrame(np.arange(12).reshape((3,4)),index=['one','two','thr'],columns=list('abcd')) df['a']#取a列 df[['a','b']]#取a.b列 #ix可以用数字索引,也可以用index和column索引 df.ix[0]#取
-
pandas数据处理基础之筛选指定行或者指定列的数据
pandas主要的两个数据结构是:series(相当于一行或一列数据机构)和DataFrame(相当于多行多列的一个表格数据机构). 本文为了方便理解会与excel或者sql操作行或列来进行联想类比 1.重新索引:reindex和ix 上一篇中介绍过数据读取后默认的行索引是0,1,2,3...这样的顺序号.列索引相当于字段名(即第一行数据),这里重新索引意思就是可以将默认的索引重新修改成自己想要的样子. 1.1 Series 比方说:data=Series([4,5,6],index=['a',
-
pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]
1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍. 在Dataframe中选取数据大抵包括3中情况: 1)行(列)选取(单维度选取):df[].这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件). 2
-
如何利用Pandas查询选取数据
目录 一,Pandas查询数据的几种方法 二,Pandas使用df.loc查询数据的方法 df[] df.loc方法查询 df.iloc方法查询 总结 一,Pandas查询数据的几种方法 df[]按行列选取,这种情况一次只能选取行或者列 df.loc方法,根据行.列的标签值查询 df.iloc方法,根据行.列的数字位置查询,根据索引定位 df.query方法 二,Pandas使用df.loc查询数据的方法 使用单个label值查询数据 使用值列表批量查询 使用数值区间进行范围查询 使用条件表达式
随机推荐
- jQuery+CSS实现的网页二级下滑菜单效果
- 在JS中操作时间之getUTCMilliseconds()方法的使用
- 玩转Win XP系统内置语音输入软件
- python实现统计汉字/英文单词数的正则表达式
- MyBatis学习教程(二)—如何使用MyBatis对users表执行CRUD操作
- 利用js实现禁止复制文本信息
- javascript实现的textarea运行框效果代码 不用指定id批量指定
- asp.net coolite 删除时弹出确定按钮
- PHP将XML转数组过程详解
- JS正则表达式获取字符串中特定字符的方法
- Django卸载之后重新安装的方法
- JavaScript错误处理和堆栈追踪详解
- Spring MVC中上传文件实例
- 漂流瓶推送需求的逻辑实现代码
- Android 活动条ActionBar的详解及实例代码
- Linux下apache如何限制并发连接和下载速度
- MongoDB入门教程之C#驱动操作实例
- jQuery列表拖动排列具体实现
- Android网络判断知识小结
- Android实现语音数据实时采集、播放