TensorFlow实现随机训练和批量训练的方法

TensorFlow更新模型变量。它能一次操作一个数据点,也可以一次操作大量数据。一个训练例子上的操作可能导致比较“古怪”的学习过程,但使用大批量的训练会造成计算成本昂贵。到底选用哪种训练类型对机器学习算法的收敛非常关键。

为了TensorFlow计算变量梯度来让反向传播工作,我们必须度量一个或者多个样本的损失。

随机训练会一次随机抽样训练数据和目标数据对完成训练。另外一个可选项是,一次大批量训练取平均损失来进行梯度计算,批量训练大小可以一次上扩到整个数据集。这里将显示如何扩展前面的回归算法的例子——使用随机训练和批量训练。

批量训练和随机训练的不同之处在于它们的优化器方法和收敛。

# 随机训练和批量训练
#----------------------------------
#
# This python function illustrates two different training methods:
# batch and stochastic training. For each model, we will use
# a regression model that predicts one model variable.

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()

# 随机训练:
# Create graph
sess = tf.Session()

# 声明数据
x_vals = np.random.normal(1, 0.1, 100)
y_vals = np.repeat(10., 100)
x_data = tf.placeholder(shape=[1], dtype=tf.float32)
y_target = tf.placeholder(shape=[1], dtype=tf.float32)

# 声明变量 (one model parameter = A)
A = tf.Variable(tf.random_normal(shape=[1]))

# 增加操作到图
my_output = tf.multiply(x_data, A)

# 增加L2损失函数
loss = tf.square(my_output - y_target)

# 初始化变量
init = tf.global_variables_initializer()
sess.run(init)

# 声明优化器
my_opt = tf.train.GradientDescentOptimizer(0.02)
train_step = my_opt.minimize(loss)

loss_stochastic = []
# 运行迭代
for i in range(100):
 rand_index = np.random.choice(100)
 rand_x = [x_vals[rand_index]]
 rand_y = [y_vals[rand_index]]
 sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
 if (i+1)%5==0:
  print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)))
  temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
  print('Loss = ' + str(temp_loss))
  loss_stochastic.append(temp_loss)

# 批量训练:
# 重置计算图
ops.reset_default_graph()
sess = tf.Session()

# 声明批量大小
# 批量大小是指通过计算图一次传入多少训练数据
batch_size = 20

# 声明模型的数据、占位符
x_vals = np.random.normal(1, 0.1, 100)
y_vals = np.repeat(10., 100)
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

# 声明变量 (one model parameter = A)
A = tf.Variable(tf.random_normal(shape=[1,1]))

# 增加矩阵乘法操作(矩阵乘法不满足交换律)
my_output = tf.matmul(x_data, A)

# 增加损失函数
# 批量训练时损失函数是每个数据点L2损失的平均值
loss = tf.reduce_mean(tf.square(my_output - y_target))

# 初始化变量
init = tf.global_variables_initializer()
sess.run(init)

# 声明优化器
my_opt = tf.train.GradientDescentOptimizer(0.02)
train_step = my_opt.minimize(loss)

loss_batch = []
# 运行迭代
for i in range(100):
 rand_index = np.random.choice(100, size=batch_size)
 rand_x = np.transpose([x_vals[rand_index]])
 rand_y = np.transpose([y_vals[rand_index]])
 sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
 if (i+1)%5==0:
  print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)))
  temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
  print('Loss = ' + str(temp_loss))
  loss_batch.append(temp_loss)

plt.plot(range(0, 100, 5), loss_stochastic, 'b-', label='Stochastic Loss')
plt.plot(range(0, 100, 5), loss_batch, 'r--', label='Batch Loss, size=20')
plt.legend(loc='upper right', prop={'size': 11})
plt.show()

输出:

Step #5 A = [ 1.47604525]
Loss = [ 72.55678558]
Step #10 A = [ 3.01128507]
Loss = [ 48.22986221]
Step #15 A = [ 4.27042341]
Loss = [ 28.97912598]
Step #20 A = [ 5.2984333]
Loss = [ 16.44779968]
Step #25 A = [ 6.17473984]
Loss = [ 16.373312]
Step #30 A = [ 6.89866304]
Loss = [ 11.71054649]
Step #35 A = [ 7.39849901]
Loss = [ 6.42773056]
Step #40 A = [ 7.84618378]
Loss = [ 5.92940331]
Step #45 A = [ 8.15709782]
Loss = [ 0.2142024]
Step #50 A = [ 8.54818344]
Loss = [ 7.11651039]
Step #55 A = [ 8.82354641]
Loss = [ 1.47823763]
Step #60 A = [ 9.07896614]
Loss = [ 3.08244276]
Step #65 A = [ 9.24868107]
Loss = [ 0.01143846]
Step #70 A = [ 9.36772251]
Loss = [ 2.10078788]
Step #75 A = [ 9.49171734]
Loss = [ 3.90913701]
Step #80 A = [ 9.6622715]
Loss = [ 4.80727625]
Step #85 A = [ 9.73786926]
Loss = [ 0.39915398]
Step #90 A = [ 9.81853104]
Loss = [ 0.14876099]
Step #95 A = [ 9.90371323]
Loss = [ 0.01657014]
Step #100 A = [ 9.86669159]
Loss = [ 0.444787]
Step #5 A = [[ 2.34371352]]
Loss = 58.766
Step #10 A = [[ 3.74766445]]
Loss = 38.4875
Step #15 A = [[ 4.88928795]]
Loss = 27.5632
Step #20 A = [[ 5.82038736]]
Loss = 17.9523
Step #25 A = [[ 6.58999157]]
Loss = 13.3245
Step #30 A = [[ 7.20851326]]
Loss = 8.68099
Step #35 A = [[ 7.71694899]]
Loss = 4.60659
Step #40 A = [[ 8.1296711]]
Loss = 4.70107
Step #45 A = [[ 8.47107315]]
Loss = 3.28318
Step #50 A = [[ 8.74283409]]
Loss = 1.99057
Step #55 A = [[ 8.98811722]]
Loss = 2.66906
Step #60 A = [[ 9.18062305]]
Loss = 3.26207
Step #65 A = [[ 9.31655025]]
Loss = 2.55459
Step #70 A = [[ 9.43130589]]
Loss = 1.95839
Step #75 A = [[ 9.55670166]]
Loss = 1.46504
Step #80 A = [[ 9.6354847]]
Loss = 1.49021
Step #85 A = [[ 9.73470974]]
Loss = 1.53289
Step #90 A = [[ 9.77956581]]
Loss = 1.52173
Step #95 A = [[ 9.83666706]]
Loss = 0.819207
Step #100 A = [[ 9.85569191]]
Loss = 1.2197

训练类型 优点 缺点
随机训练 脱离局部最小 一般需更多次迭代才收敛
批量训练 快速得到最小损失 耗费更多计算资源

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • tensorflow学习笔记之简单的神经网络训练和测试
  • 利用TensorFlow训练简单的二分类神经网络模型的方法
  • tensorflow入门之训练简单的神经网络方法
  • tensorflow训练中出现nan问题的解决
  • 详解tensorflow训练自己的数据集实现CNN图像分类
(0)

相关推荐

  • 利用TensorFlow训练简单的二分类神经网络模型的方法

    利用TensorFlow实现<神经网络与机器学习>一书中4.7模式分类练习 具体问题是将如下图所示双月牙数据集分类. 使用到的工具: python3.5    tensorflow1.2.1   numpy   matplotlib 1.产生双月环数据集 def produceData(r,w,d,num): r1 = r-w/2 r2 = r+w/2 #上半圆 theta1 = np.random.uniform(0, np.pi ,num) X_Col1 = np.random.unifo

  • tensorflow学习笔记之简单的神经网络训练和测试

    本文实例为大家分享了用简单的神经网络来训练和测试的具体代码,供大家参考,具体内容如下 刚开始学习tf时,我们从简单的地方开始.卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始. 神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层. 数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出.输出的时候,我们可以使用softmax回归,输出属于每个类别的概率值.借用极客学院的图表示如下: 其中,x1,x2,x3为输入数据,经过运算后,

  • tensorflow训练中出现nan问题的解决

    深度学习中对于网络的训练是参数更新的过程,需要注意一种情况就是输入数据未做归一化时,如果前向传播结果已经是[0,0,0,1,0,0,0,0]这种形式,而真实结果是[1,0,0,0,0,0,0,0,0],此时由于得出的结论不惧有概率性,而是错误的估计值,此时反向传播会使得权重和偏置值变的无穷大,导致数据溢出,也就出现了nan的问题. 解决办法: 1.对输入数据进行归一化处理,如将输入的图片数据除以255将其转化成0-1之间的数据; 2.对于层数较多的情况,各层都做batch_nomorlizati

  • tensorflow入门之训练简单的神经网络方法

    这几天开始学tensorflow,先来做一下学习记录 一.神经网络解决问题步骤: 1.提取问题中实体的特征向量作为神经网络的输入.也就是说要对数据集进行特征工程,然后知道每个样本的特征维度,以此来定义输入神经元的个数. 2.定义神经网络的结构,并定义如何从神经网络的输入得到输出.也就是说定义输入层,隐藏层以及输出层. 3.通过训练数据来调整神经网络中的参数取值,这是训练神经网络的过程.一般来说要定义模型的损失函数,以及参数优化的方法,如交叉熵损失函数和梯度下降法调优等. 4.利用训练好的模型预测

  • 详解tensorflow训练自己的数据集实现CNN图像分类

    利用卷积神经网络训练图像数据分为以下几个步骤 1.读取图片文件 2.产生用于训练的批次 3.定义训练的模型(包括初始化参数,卷积.池化层等参数.网络) 4.训练 1 读取图片文件 def get_files(filename): class_train = [] label_train = [] for train_class in os.listdir(filename): for pic in os.listdir(filename+train_class): class_train.app

  • TensorFlow实现随机训练和批量训练的方法

    TensorFlow更新模型变量.它能一次操作一个数据点,也可以一次操作大量数据.一个训练例子上的操作可能导致比较"古怪"的学习过程,但使用大批量的训练会造成计算成本昂贵.到底选用哪种训练类型对机器学习算法的收敛非常关键. 为了TensorFlow计算变量梯度来让反向传播工作,我们必须度量一个或者多个样本的损失. 随机训练会一次随机抽样训练数据和目标数据对完成训练.另外一个可选项是,一次大批量训练取平均损失来进行梯度计算,批量训练大小可以一次上扩到整个数据集.这里将显示如何扩展前面的回

  • C#使用TensorFlow.NET训练自己的数据集的方法

    今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分类 ,可以直接移植该代码在 CPU 或 GPU 下使用,并针对你们自己本地的图像数据集进行训练和推理.TensorFlow.NET是基于 .NET Standard 框架的完整实现的TensorFlow,可以支持 .NET Framework 或 .NET CORE , TensorFlow.NET 为广大.NET开发者提供了完美的机器学习框架选择. Sc

  • python 划分数据集为训练集和测试集的方法

    sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split from sklearn.cross_validation import train_test_split #x为数据集的feature熟悉,y为label. x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3) 得到的x_train,y_train(x_te

  • 浅谈tensorflow中Dataset图片的批量读取及维度的操作详解

    三维的读取图片(w, h, c): import tensorflow as tf import glob import os def _parse_function(filename): # print(filename) image_string = tf.read_file(filename) image_decoded = tf.image.decode_image(image_string) # (375, 500, 3) image_resized = tf.image.resize

  • Keras在训练期间可视化训练误差和测试误差实例

    详细的解释,读者自行打开这个链接查看,我这里只把最重要的说下 fit() 方法会返回一个训练期间历史数据记录对象,包含 training error, training accuracy, validation error, validation accuracy 字段,如下打印 # list all data in history print(history.history.keys()) 完整代码 # Visualize training history from keras.models

  • tensorflow实现将ckpt转pb文件的方法

    本博客实现将自己训练保存的ckpt模型转换为pb文件,该方法适用于任何ckpt模型,当然你需要确定ckpt模型输入/输出的节点名称. 使用 tf.train.saver()保存模型时会产生多个文件,会把计算图的结构和图上参数取值分成了不同的文件存储.这种方法是在TensorFlow中是最常用的保存方式. 例如:下面的代码运行后,会在save目录下保存了四个文件: import tensorflow as tf # 声明两个变量 v1 = tf.Variable(tf.random_normal(

  • Node.js下向MySQL数据库插入批量数据的方法

    项目(nodejs)中需要一次性插入多笔数据到数据库,数据库是mysql的,由于循环插入的性能太差,就像使用批量插入的方法提高数据的插入性能. 批量插入的数据库的表结构如下: 1.数据库连接 var mysql = require('mysql'); // 数据库信息 var connection = mysql.createConnection({ host : 'localhost', user : '数据库用户名', password : '数据库登录密码', database : '操作

  • 四种数据库随机获取10条数据的方法

    四种数据库随机获取10条数据的方法 SQL Server: 复制代码 代码如下: SELECT TOP 10 * FROM T_USER ORDER BY NEWID() ORACLE: 复制代码 代码如下: SELECT * FROM (SELECT * FROM T_USER ORDER BY DBMS_RANDOM.RANDOM()) WHERE RONUM <= 10 MySQL: 复制代码 代码如下: SELECT * FROM T_USER  ORDER BY  RAND() LIM

  • PHP随机生成信用卡卡号的方法

    本文实例讲述了PHP随机生成信用卡卡号的方法.分享给大家供大家参考.具体分析如下: 这段PHP代码根据信用卡卡号产生规则随机生成信用卡卡号,是可以通过验证的,仅供学习参考,请不要用于非法用途,否则后果自负. <?php /* PHP credit card number generator Copyright (C) 2006 Graham King graham@darkcoding.net This program is free software; you can redistribute

  • js随机生成网页背景颜色的方法

    本文实例讲述了js随机生成网页背景颜色的方法.分享给大家供大家参考.具体实现方法如下: 复制代码 代码如下: <HTML> <HEAD> <TITLE>随机生成网页背景颜色的JS特效</TITLE> <STYLE> .30pt{font-size:30pt;color:#de3076} </STYLE> <SCRIPT LANGUAGE="JavaScript"> <!-- color=new A

随机推荐