详解Python二维数组与三维数组切片的方法

如果对象是二维数组,则切片应当是x[:]的形式,里面有一个冒号,冒号之前和之后分别表示对象的第0个维度和第1个维度;

如果对象是三维数组,则切片应当是x[::],里面有两个冒号,分割出三个间隔,三个间隔的前、中和后分别表示对象的第0、1、2个维度。

x[n,:]、x[:,n]、x[m:n,:]、x[:,m:n]

上面的中括号中(m:n)应当看成一个整体,除了(m:n)之外的冒号就是用来表明在哪个维度上操作的。

对于二维数组,在冒号前面的(n,)意味着对二维数组的第0个维度上的第n号元素操作,在冒号后面的(,n)意味着对二维数组的第1个维度上的第n号元素进行操作。如果n替换成(m:n)则表示对第m号到第n-1号元素操作。

举例:

import numpy as np

a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], [17, 18, 19, 20]])
print(a.shape)
print(a[0, :], a[0, :].shape)
print(a[1, :], a[1, :].shape)
print(a[-1, :], a[-1, :].shape)
print(a[0:2, :], a[0:2, :].shape)
print(a[:, 0], a[:, 0].shape)
print(a[:, 1], a[:, 1].shape)
print(a[:, -1], a[:, -1].shape)
print(a[:, 0:2], a[:, 0:2].shape)

运行结果如下:

(5, 4)
[1 2 3 4] (4,)
[5 6 7 8] (4,)
[17 18 19 20] (4,)
[[1 2 3 4]
 [5 6 7 8]] (2, 4)
[ 1 5 9 13 17] (5,)
[ 2 6 10 14 18] (5,)
[ 4 8 12 16 20] (5,)
[[ 1 2]
 [ 5 6]
 [ 9 10]
 [13 14]
 [17 18]] (5, 2)

Process finished with exit code 0

上例中,a是shape=(5,4)的数组。第0个维度上有5个元素,第1个维度上有4个元素(元素不一定是单个值, 也可能是数组,这里的元素的叫法是相对于某个维度而言的)。

  • a[0, :]、a[1, :]、a[-1, :]分别提取了a的第0个维度上的第0、1和-1个元素,每个元素都是一个含有4个元素的数组。
  • a[0:2, :]提取了a的第0个维度上的第0和1两个元素,两个元素都是一个含有4个元素的数组,共同组成一个二维数组。
  • a[:, 0]、a[:, 1]、a[:, -1]分别提取了a的第1个维度上的0、1和-1个元素,每个元素都是单个元素值。
  • a[:, 0:2]提取了a的第1个维度上的第0和1两个元素,两个元素都是单个元素值,共同组成一个二维数组。

x[n,::]、x[:,n:]、x[::,n]、x[:,:,n]、x[m:n,::]、x[:,m:n:]、x[::,m:n]、x[:,:,m:n]

上面的中括号中(m:n)应当看成一个整体,除了(m:n)之外的两个冒号就是用来表明在哪个维度上操作的。

对于三维数组,在双冒号的最前面的(n,)意味着对三维数组的第0个维度上的第n号元素操作,在双冒号的中间的(,n)意味着对三维数组的第1个维度上的第n号元素进行操作,在双冒号的后面的(,n)意味着对三维数组的第2个维度上的第n号元素进行操作。如果n替换成(m:n)则表示对第m号到第n-1号元素操作。

举例:

import numpy as np

b = np.array([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],
       [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]],
       [[25, 26, 27, 28], [29, 30, 31, 32], [33, 34, 35, 36]],
       ])

print(b.shape)
print("b[0, ::],b[1, ::],b[-1, ::],b[0:2, ::]")
print(b[0, ::], b[0, ::].shape)
print(b[1, ::], b[1, ::].shape)
print(b[-1, ::], b[-1, ::].shape)
print(b[0:2, ::], b[0:2, ::].shape)
print("b[:, 0:],b[:, 1:],b[:, -1:],b[:, 0:2:]")
print(b[:, 0:], b[:, 0:].shape)
print(b[:, 1:], b[:, 1:].shape)
print(b[:, -1:], b[:, -1:].shape)
print(b[:, 0:2:], b[:, 0:2:].shape)
print("b[::, 0],b[::, 1],b[::, -1],b[::, 0:2:]")
print(b[::, 0], b[::, 0].shape)
print(b[::, 1], b[::, 1].shape)
print(b[::, -1], b[::, -1].shape)
print(b[::, 0:2:], b[::, 0:2].shape)
print("b[:,:, 0],b[:,:, 1],b[:,:, -1],b[:,:, 0:2:]")
print(b[:, :, 0], b[:, :, 0].shape)
print(b[:, :, 1], b[:, :, 1].shape)
print(b[:, :, -1], b[:, :, -1].shape)
print(b[:, :, 0:2:], b[:, :, 0:2].shape)

运行结果如下:

(3, 3, 4)
b[0, ::],b[1, ::],b[-1, ::],b[0:2, ::]
[[ 1 2 3 4]
 [ 5 6 7 8]
 [ 9 10 11 12]] (3, 4)
[[13 14 15 16]
 [17 18 19 20]
 [21 22 23 24]] (3, 4)
[[25 26 27 28]
 [29 30 31 32]
 [33 34 35 36]] (3, 4)
[[[ 1 2 3 4]
 [ 5 6 7 8]
 [ 9 10 11 12]]

 [[13 14 15 16]
 [17 18 19 20]
 [21 22 23 24]]] (2, 3, 4)
b[:, 0:],b[:, 1:],b[:, -1:],b[:, 0:2:]
[[[ 1 2 3 4]
 [ 5 6 7 8]
 [ 9 10 11 12]]

 [[13 14 15 16]
 [17 18 19 20]
 [21 22 23 24]]

 [[25 26 27 28]
 [29 30 31 32]
 [33 34 35 36]]] (3, 3, 4)
[[[ 5 6 7 8]
 [ 9 10 11 12]]

 [[17 18 19 20]
 [21 22 23 24]]

 [[29 30 31 32]
 [33 34 35 36]]] (3, 2, 4)
[[[ 9 10 11 12]]

 [[21 22 23 24]]

 [[33 34 35 36]]] (3, 1, 4)
[[[ 1 2 3 4]
 [ 5 6 7 8]]

 [[13 14 15 16]
 [17 18 19 20]]

 [[25 26 27 28]
 [29 30 31 32]]] (3, 2, 4)
b[::, 0],b[::, 1],b[::, -1],b[::, 0:2:]
[[ 1 2 3 4]
 [13 14 15 16]
 [25 26 27 28]] (3, 4)
[[ 5 6 7 8]
 [17 18 19 20]
 [29 30 31 32]] (3, 4)
[[ 9 10 11 12]
 [21 22 23 24]
 [33 34 35 36]] (3, 4)
[[[ 1 2 3 4]
 [ 5 6 7 8]]

 [[13 14 15 16]
 [17 18 19 20]]

 [[25 26 27 28]
 [29 30 31 32]]] (3, 2, 4)
b[:,:, 0],b[:,:, 1],b[:,:, -1],b[:,:, 0:2:]
[[ 1 5 9]
 [13 17 21]
 [25 29 33]] (3, 3)
[[ 2 6 10]
 [14 18 22]
 [26 30 34]] (3, 3)
[[ 4 8 12]
 [16 20 24]
 [28 32 36]] (3, 3)
[[[ 1 2]
 [ 5 6]
 [ 9 10]]

 [[13 14]
 [17 18]
 [21 22]]

 [[25 26]
 [29 30]
 [33 34]]] (3, 3, 2)

Process finished with exit code 0

上例中,b是shape=(3,3,4)的数组。第0个维度上有3个元素,第1个维度上有3个元素,第2个维度上有4个元素(元素不一定是单个值, 也可能是数组,这里的元素的叫法是相对于某个维度而言的)。

  • b[0, ::]、b[1, ::]、b[-1, ::]分别提取了b的第0个维度上的第0、1和-1个元素,每个元素都是一个二维数组。
  • b[0:2, ::]提取了b的第0个维度上的第0和1两个元素,两个元素都是一个二维数组,共同组成一个三维数组。
  • b[:, 0:]、b[:, 1:]、b[:, -1:]分别提取了b的全部元素(都是由4个元素的单个数组)、b的第1个维度上除第0号外的所有元素(都是由4个元素的单个数组)、b的第1个维度上的所有最后一个位置上的元素(都是由4个元素的单个数组)。
  • b[:, 0:2:]提取了b的第1个维度上的第0和1两个元素,两个元素都是一个有4个元素的数组,共同组成一个三维数组。
  • b[::, 0]、b[::, 1]、b[::, -1]分别提取了b的第2个维度上的0、1和-1个元素(这里的元素就是单个有4个元素的数组),每个元素都是有4个元素的数组。
  • b[::, 0:2]提取了b的第2个维度上的第0和1两个元素(这里的元素就是单个有4个元素的数组),两个元素都是有4个元素的数组。
  • b[:,:, 0]、b[:,:, 1]、b[:,:, -1]分别提取了b的第2个维度的所有元素(即有4个元素的数组)中的第0、1和-1个元素值,每个元素都是单个元素值。
  • b[:,:, 0:2]提取了b的第2个维度的所有元素(即有4个元素的数组)中的第0和1两个元素值,两个元素都是单个元素值。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python多维数组切片方法

    1.数组a第0个元素(二维数组)下的所有子元素(一维数组)的第一列 import numpy as np b=np.arange(24) a=b.reshape(2,3,4) print a print a[0,:,0] 2.取所有二维数组下的每个二维数组的第0个元素(一维数组) b=np.arange(24) a=b.reshape(2,3,4) print a print '--------------------' print a[:,0] 结果: [[ 0 1 2 3] [12 13 1

  • python numpy数组的索引和切片的操作方法

    NumPy - 简介 NumPy 是一个 Python 包. 它代表 "Numeric Python". 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的. 也开发了另一个包 Numarray ,它拥有一些额外的功能. 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包. 这个开源项目有很多贡献者. NumPy 操作 使用Nu

  • 对Python 数组的切片操作详解

    高级特性 切片操作:对list,tuple元素进行截取操作,非常简便. L[0:3],L[:3] 截取前3个元素. L[1:3] 从1开始截取2个元素出来. L[-1] 取倒数第一个元素出来. L[-10] 取后10个数 L[10:20] 取前11-20个数 L[:10:2] 取前10个数,每两个取一个 L[::5] 所有数,每5个取一个 L[:] 原样复制一个list tuple,字符串也可以进行切片操作 以上这篇对Python 数组的切片操作详解就是小编分享给大家的全部内容了,希望能给大家一

  • 详解Python二维数组与三维数组切片的方法

    如果对象是二维数组,则切片应当是x[:]的形式,里面有一个冒号,冒号之前和之后分别表示对象的第0个维度和第1个维度: 如果对象是三维数组,则切片应当是x[::],里面有两个冒号,分割出三个间隔,三个间隔的前.中和后分别表示对象的第0.1.2个维度. x[n,:].x[:,n].x[m:n,:].x[:,m:n] 上面的中括号中(m:n)应当看成一个整体,除了(m:n)之外的冒号就是用来表明在哪个维度上操作的. 对于二维数组,在冒号前面的(n,)意味着对二维数组的第0个维度上的第n号元素操作,在冒

  • python 二维矩阵转三维矩阵示例

    如下所示: >>> import numpy as np >>> a = np.arange(12).reshape(3,4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> type(a) <class 'numpy.ndarray'> >>> b=np.reshape(a,(3,4,1)) >>> np

  • 详解python中读取和查看图片的6种方法

    目录 1 OpenCV 2 imageio 3 PIL 4 scipy.misc 5 tensorflow 6 skimage 本文主要介绍了python中读取和查看图片的6种方法,分享给大家,具体如下: file_name1='test_imgs/spect/1.png' # 这是彩色图片 file_name2='test_imgs/mri/1.png' # 这是灰度图片 1 OpenCV 注:用cv2读取图片默认通道顺序是B.G.R,而不是通常的RGB顺序,所以读进去的彩色图直接显示会出现变

  • 详解PHP 二维数组排序保持键名不变

    对二维数组指定的键名排序,首先大家想到的是array_multisort函数,关于array_multisort的用法我之前也写了一篇废话不多言,我们看个实例: <?php $data = array( 1001 => array( 'age' => 22, 'name' => '鸠摩智' ), 1007 => array( 'age' => 21, 'name' => '慕容复' ), 1004 => array( 'age' => 27, 'nam

  • 详解Python并发编程之创建多线程的几种方法

    大家好,并发编程 今天开始进入第二篇. 今天的内容会比较基础,主要是为了让新手也能无障碍地阅读,所以还是要再巩固下基础.学完了基础,你们也就能很顺畅地跟着我的思路理解以后的文章. 本文目录 学会使用函数创建多线程 学会使用类创建多线程 多线程:必学函数讲解 经过总结,Python创建多线程主要有如下两种方法: 函数 类 接下来,我们就来揭开多线程的神秘面纱. . 学会使用函数创建多线程 在Python3中,Python提供了一个内置模块 threading.Thread,可以很方便地让我们创建多

  • 详解python 破解网站反爬虫的两种简单方法

    最近在学爬虫时发现许多网站都有自己的反爬虫机制,这让我们没法直接对想要的数据进行爬取,于是了解这种反爬虫机制就会帮助我们找到解决方法. 常见的反爬虫机制有判别身份和IP限制两种,下面我们将一一来进行介绍. (一) 判别身份 首先我们看一个例子,看看到底什么时反爬虫. 我们还是以 豆瓣电影榜top250(https://movie.douban.com/top250) 为例.` import requests # 豆瓣电影榜top250的网址 url = 'https://movie.douban

  • 详解Python的Flask框架中生成SECRET_KEY密钥的方法

    引子 如果遇到了 Must provide secret_key to use csrf错误提醒,原因就是没有设置secret_key ,在代码中加上 app.config['SECRET_KEY']='xxx' SECRET_KEY最好不要写在代码中. 最好设置一个config.py文件,从中读取该内容 config.py CSRF_ENABLED = True SECRET_KEY = 'you-will-never-guess' app.py app.config.from_object(

  • 详解Python中打乱列表顺序random.shuffle()的使用方法

    之前自己一直使用random中 randint生成随机数以及使用for将列表中的数据遍历一次. 现在有个需求需要将列表的次序打乱,或者也可以这样理解: [需求]将一个容器中的数据每次随机逐个遍历一遍. random.shuffle()方法提供了完美的解决方案. 不会生成新的列表,只是将原列表的次序打乱 # shuffle()使用样例 import random x = [i for i in range(10)] print(x) random.shuffle(x) print(x) 源码及注释

  • 详解Python list和numpy array的存储和读取方法

    numpy array存储为.npy 存储: import numpy as np numpy_array = np.array([1,2,3]) np.save('log.npy',numpy_array ) 读取: import numpy as np numpy_array = np.load('log.npy') 运行结果: list存储为.txt 存储: list_log = [] list_log.append([1,2,3]) list_log.append([4,5,6,7])

  • Python绘图之二维图与三维图详解

    各位工程师累了吗? 推荐一篇可以让你技术能力达到出神入化的网站"持久男" 1.二维绘图 a. 一维数据集 用 Numpy ndarray 作为数据传入 ply 1. import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt np.random.seed(1000) y = np.random.standard_normal(10) print "y = %s"% y x =

随机推荐