8种用Python实现线性回归的方法对比详解

前言

说到如何用Python执行线性回归,大部分人会立刻想到用sklearn的linear_model,但事实是,Python至少有8种执行线性回归的方法,sklearn并不是最高效的。

今天,让我们来谈谈线性回归。没错,作为数据科学界元老级的模型,线性回归几乎是所有数据科学家的入门必修课。抛开涉及大量数统的模型分析和检验不说,你真的就能熟练应用线性回归了么?未必!

在这篇文章中,文摘菌将介绍8种用Python实现线性回归的方法。了解了这8种方法,就能够根据不同需求,灵活选取最为高效的方法实现线性回归。

“宝刀不老”的线性回归

时至今日,深度学习早已成为数据科学的新宠。即便往前推10年,SVM、boosting等算法也能在准确率上完爆线性回归。

为什么我们还需要线性回归呢?

一方面,线性回归所能够模拟的关系其实远不止线性关系。线性回归中的“线性”指的是系数的线性,而通过对特征的非线性变换,以及广义线性模型的推广,输出和特征之间的函数关系可以是高度非线性的。另一方面,也是更为重要的一点,线性模型的易解释性使得它在物理学、经济学、商学等领域中占据了难以取代的地位。

那么,如何用Python来实现线性回归呢?

由于机器学习库scikit-learn的广泛流行,常用的方法是从该库中调用linear_model来拟合数据。虽然这可以提供机器学习的其他流水线特征(例如:数据归一化,模型系数正则化,将线性模型传递到另一个下游模型)的其他优点,但是当一个数据分析师需要快速而简便地确定回归系数(和一些基本相关统计量)时,这通常不是最快速简便的方法。

下面,我将介绍一些更快更简洁的方法,但是它们所提供信息量和建模的灵活性不尽相同。

各种线性回归方法的完整源码都可以在文末的GitHub链接中找到。他们大多数都依赖于SciPy包。

SciPy是基于Python的Numpy扩展构建的数学算法和函数的集合。通过为用户提供便于操作和可视化数据的高级命令和类,为交互式Python会话增加了强大的功能。

8种方法实现线性回归

方法一:Scipy.polyfit( ) or numpy.polyfit( )

这是一个最基本的最小二乘多项式拟合函数(least squares polynomial fit function),接受数据集和任何维度的多项式函数(由用户指定),并返回一组使平方误差最小的系数。这里给出函数的详细描述。对于简单的线性回归来说,可以选择1维函数。但是如果你想拟合更高维的模型,则可以从线性特征数据中构建多项式特征并拟合模型。

方法二:Stats.linregress( )

这是一个高度专业化的线性回归函数,可以在SciPy的统计模块中找到。然而因为它仅被用来优化计算两组测量数据的最小二乘回归,所以其灵活性相当受限。因此,不能使用它进行广义线性模型和多元回归拟合。但是,由于其特殊性,它是简单线性回归中最快速的方法之一。除了拟合的系数和截距项之外,它还返回基本统计量,如R2系数和标准差。

方法三:Optimize.curve_fit( )

这与Polyfit方法是一致的,但本质上更具一般性。这个强大的函数来自scipy.optimize模块,可以通过最小二乘最小化将任意的用户自定义函数拟合到数据集上。

对于简单的线性回归来说,可以只写一个线性的mx + c函数并调用这个估计函数。不言而喻,它也适用于多元回归,并返回最小二乘度量最小的函数参数数组以及协方差矩阵。

方法四:numpy.linalg.lstsq

这是通过矩阵分解计算线性方程组的最小二乘解的基本方法。来自numpy包的简便线性代数模块。在该方法中,通过计算欧几里德2-范数||b-ax||2最小化的向量x来求解等式ax = b。

该方程可能有无数解、唯一解或无解。如果a是方阵且满秩,则x(四舍五入)是方程的“精确”解。

你可以使用这个方法做一元或多元线性回归来得到计算的系数和残差。一个小诀窍是,在调用函数之前必须在x数据后加一列1来计算截距项。这被证明是更快速地解决线性回归问题的方法之一。

方法五:Statsmodels.OLS ( )

Statsmodels是一个小型的Python包,它为许多不同的统计模型估计提供了类和函数,还提供了用于统计测试和统计数据探索的类和函数。每个估计对应一个泛结果列表。可根据现有的统计包进行测试,从而确保统计结果的正确性。

对于线性回归,可以使用该包中的OLS或一般最小二乘函数来获得估计过程中的完整的统计信息。

一个需要牢记的小技巧是,必须手动给数据x添加一个常数来计算截距,否则默认情况下只会得到系数。以下是OLS模型的完整汇总结果的截图。结果中与R或Julia等统计语言一样具有丰富的内容。

方法六和七:使用矩阵的逆求解析解

对于条件良好的线性回归问题(其中,至少满足数据点个数>特征数量),系数求解等价于存在一个简单的闭式矩阵解,使得最小二乘最小化。由下式给出:

这里有两个选择:

(a)使用简单的乘法求矩阵的逆

(b)首先计算x的Moore-Penrose广义伪逆矩阵,然后与y取点积。由于第二个过程涉及奇异值分解(SVD),所以它比较慢,但是它可以很好地适用于没有良好条件的数据集。

方法八:sklearn.linear_model.LinearRegression( )

这是大多数机器学习工程师和数据科学家使用的典型方法。当然,对于现实世界中的问题,它可能被交叉验证和正则化的算法如Lasso回归和Ridge回归所取代,而不被过多使用,但是这些高级函数的核心正是这个模型本身。

八种方法效率比拼

作为一名数据科学家,应该一直寻找准确且快速的方法或函数来完成数据建模工作。如果模型本来就很慢,那么会对大数据集造成执行瓶颈。

一个可以用来确定可扩展性的好办法是不断增加数据集的大小,执行模型并取所有的运行时间绘制成趋势图。

下面是源代码及其运行结果

https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Linear_Regression_Methods.ipynb)。

由于其简单,即使多达1000万个数据点,stats.linregress和简单的矩阵求逆还是最快速的方法。

8种用Python实现线性回归的方法,究竟哪个方法最高效?

简单矩阵逆求解的方案更快

作为数据科学家,我们必须一直探索多种解决方案来对相同的任务进行分析和建模,并为特定问题选择最佳方案。

在本文中,我们讨论了8种简单线性回归的方法。大多数都可以扩展到更一般化的多元和多项式回归建模中。

本文的目标主要是讨论这些方法的相对运行速度和计算复杂度。我们在一个数据量持续增加的合成数据集(最多达1000万个样本)上进行测试,并给出每种方法的运算时间。

令人惊讶的是,与广泛被使用的scikit-learnlinear_model相比,简单矩阵的逆求解的方案反而更加快速。

我们还收集了项目代码,大家可以到这里下载代码并直接运行文中提到的8种方法喔:

https://github.com/tirthajyoti/PythonMachineLearning/blob/master/Linear_Regression_Methods.ipynb

英文原文地址:https://medium.freecodecamp.org/data-science-with-python-8-ways-to-do-linear-regression-and-measure-their-speed-b5577d75f8b

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python scikit-learn 做线性回归的示例代码

    一.概述 机器学习算法在近几年大数据点燃的热火熏陶下已经变得被人所"熟知",就算不懂得其中各算法理论,叫你喊上一两个著名算法的名字,你也能昂首挺胸脱口而出.当然了,算法之林虽大,但能者还是有限,能适应某些环境并取得较好效果的算法会脱颖而出,而表现平平者则被历史所淡忘.随着机器学习社区的发展和实践验证,这群脱颖而出者也逐渐被人所认可和青睐,同时获得了更多社区力量的支持.改进和推广. 以最广泛的分类算法为例,大致可以分为线性和非线性两大派别.线性算法有著名的逻辑回归.朴素贝叶斯.最大熵等,

  • Python实现的简单线性回归算法实例分析

    本文实例讲述了Python实现的简单线性回归算法.分享给大家供大家参考,具体如下: 用python实现R的线性模型(lm)中一元线性回归的简单方法,使用R的women示例数据,R的运行结果: > summary(fit) Call: lm(formula = weight ~ height, data = women) Residuals:     Min      1Q  Median      3Q     Max -1.7333 -1.1333 -0.3833  0.7417  3.116

  • Python实现的线性回归算法示例【附csv文件下载】

    本文实例讲述了Python实现的线性回归算法.分享给大家供大家参考,具体如下: 用python实现线性回归 Using Python to Implement Line Regression Algorithm 小菜鸟记录学习过程 代码: #encoding:utf-8 """ Author: njulpy Version: 1.0 Data: 2018/04/09 Project: Using Python to Implement LineRegression Algor

  • Python编程实现使用线性回归预测数据

    本文中,我们将进行大量的编程--但在这之前,我们先介绍一下我们今天要解决的实例问题. 1) 预测房子价格 房价大概是我们中国每一个普通老百姓比较关心的问题,最近几年保障啊,小编这点微末工资着实有点受不了. 我们想预测特定房子的价值,预测依据是房屋面积. 2) 预测下周哪个电视节目会有更多的观众 闪电侠和绿箭侠是我最喜欢的电视节目,特别是绿箭侠,当初追的昏天黑地的,不过后来由于一些原因,没有接着往下看.我想看看下周哪个节目会有更多的观众. 3) 替换数据集中的缺失值 我们经常要和带有缺失值的数据集

  • Python线性回归实战分析

    一.线性回归的理论 1)线性回归的基本概念 线性回归是一种有监督的学习算法,它介绍的自变量的和因变量的之间的线性的相关关系,分为一元线性回归和多元的线性回归.一元线性回归是一个自变量和一个因变量间的回归,可以看成是多远线性回归的特例.线性回归可以用来预测和分类,从回归方程可以看出自变量和因变量的相互影响关系. 线性回归模型如下: 对于线性回归的模型假定如下: (1) 误差项的均值为0,且误差项与解释变量之间线性无关 (2) 误差项是独立同分布的,即每个误差项之间相互独立且每个误差项的方差是相等的

  • Python数据分析之双色球基于线性回归算法预测下期中奖结果示例

    本文实例讲述了Python数据分析之双色球基于线性回归算法预测下期中奖结果.分享给大家供大家参考,具体如下: 前面讲述了关于双色球的各种算法,这里将进行下期双色球号码的预测,想想有些小激动啊. 代码中使用了线性回归算法,这个场景使用这个算法,预测效果一般,各位可以考虑使用其他算法尝试结果. 发现之前有很多代码都是重复的工作,为了让代码看的更优雅,定义了函数,去调用,顿时高大上了 #!/usr/bin/python # -*- coding:UTF-8 -*- #导入需要的包 import pan

  • python实现机器学习之多元线性回归

    总体思路与一元线性回归思想一样,现在将数据以矩阵形式进行运算,更加方便. 一元线性回归实现代码 下面是多元线性回归用Python实现的代码: import numpy as np def linearRegression(data_X,data_Y,learningRate,loopNum): W = np.zeros(shape=[1, data_X.shape[1]]) # W的shape取决于特征个数,而x的行是样本个数,x的列是特征值个数 # 所需要的W的形式为 行=特征个数,列=1 这

  • 8种用Python实现线性回归的方法对比详解

    前言 说到如何用Python执行线性回归,大部分人会立刻想到用sklearn的linear_model,但事实是,Python至少有8种执行线性回归的方法,sklearn并不是最高效的. 今天,让我们来谈谈线性回归.没错,作为数据科学界元老级的模型,线性回归几乎是所有数据科学家的入门必修课.抛开涉及大量数统的模型分析和检验不说,你真的就能熟练应用线性回归了么?未必! 在这篇文章中,文摘菌将介绍8种用Python实现线性回归的方法.了解了这8种方法,就能够根据不同需求,灵活选取最为高效的方法实现线

  • Python比较配置文件的方法实例详解

    工作中最常见的配置文件有四种:普通key=value的配置文件.Json格式的配置文件.HTML格式的配置文件以及YMAML配置文件. 这其中以第一种居多,后三种在成熟的开源产品中较为常见,本文只针对第一种配置文件. 一般来说Linux shell下提供了diff命令来比较普通文本类的配置文件,Python的difflib也提供了str和HTML的比较接口,但是实际项目中这些工具其实并不好用,主要是因为我们的配置文件并不是标准化统一化的. 为了解决此类问题,最好针对特定的项目写特定的配置文件比较

  • python读取mnist数据集方法案例详解

    mnist手写数字数据集在机器学习中非常常见,这里记录一下用python从本地读取mnist数据集的方法. 数据集格式介绍 这部分内容网络上很常见,这里还是简明介绍一下.网络上下载的mnist数据集包含4个文件: 前两个分别是测试集的image和label,包含10000个样本.后两个是训练集的,包含60000个样本..gz表示这个一个压缩包,如果进行解压的话,会得到.ubyte格式的二进制文件. 上图是训练集的label和image数据的存储格式.两个文件最开始都有magic number和n

  • Python简易计算器制作方法代码详解

    主要用到的工具是Python中的Tkinter库 比较简单 直接上图形界面和代码 引用Tkinter库 from tkinter import * 建立主窗口对象 window=Tk() #设置窗口对象 window.title('counting machine') window.geometry("350x280") window['bg']='red' 建立标签框以及标签(将运算字符串显示在上面) frame=LabelFrame(window,bg='yellow',width

  • Python面向对象编程repr方法示例详解

    目录 为什么要讲 __repr__ 重写 __repr__ 方法 str() 和 repr() 的区别 为什么要讲 __repr__ 在 Python 中,直接 print 一个实例对象,默认是输出这个对象由哪个类创建的对象,以及在内存中的地址(十六进制表示) 假设在开发调试过程中,希望使用 print 实例对象时,输出自定义内容,就可以用 __repr__ 方法了 或者通过 repr() 调用对象也会返回 __repr__ 方法返回的值 是不是似曾相识....没错..和 __str__ 一样的

  • python中的sort方法使用详解

    Python中的sort()方法用于数组排序,本文以实例形式对此加以详细说明: 一.基本形式 列表有自己的sort方法,其对列表进行原址排序,既然是原址排序,那显然元组不可能拥有这种方法,因为元组是不可修改的. x = [4, 6, 2, 1, 7, 9] x.sort() print x # [1, 2, 4, 6, 7, 9] 如果需要一个排序好的副本,同时保持原有列表不变,怎么实现呢 x =[4, 6, 2, 1, 7, 9] y = x[ : ] y.sort() print y #[1

  • Python中pygame安装方法图文详解

    本文实例讲述了Python中pygame安装方法.分享给大家供大家参考,具体如下: 这里主要描述一下我们怎样来安装pygame 可能很多人像我一样,发现了pygame是个好东东,但是就是不知道怎样使用,或者怎样安装,在百度/google上面搜索了一番后,发现没有一篇 详细描述pygame的安装过程的文章.如果你是其中的一员,那么这篇教程可能会帮助到你. 当然,在学习pygame的时候,需要你要有一定的python基础知识的.如果你已经具备了一定的python基础,那么接下来的内容可能对你来说就很

  • python复制文件的方法实例详解

    本文实例讲述了python复制文件的方法.分享给大家供大家参考.具体分析如下: 这里涉及Python复制文件在实际操作方案中的实际应用以及Python复制文件 的相关代码说明,希望你会有所收获. Python复制文件: import shutil import os import os.path src = " d:\\download\\test\\myfile1.txt " dst = " d:\\download\\test\\myfile2.txt " ds

  • python开发之IDEL(Python GUI)的使用方法图文详解

    本文讲述了python开发之IDEL(Python GUI)的使用方法.分享给大家供大家参考,具体如下: 在安装完Python后,我们希望能够运用python GUI来运行一些我们编写的程序,那么Python GUI怎样用呢? 看完这篇blog,也许你就会使用Python GUI来编写你自己的程序了. 下面我们就来看看Python GUI是怎样使用的吧! 1. 新建一个文件 我们新建一个文件,名字随便,我这里命名为: test_hello.py 2. 用Python GUI打开文件 我们可以选择

  • python安装/卸载模块方法步骤详解(附详细图解)

    目录 以pygame模块举例 1,通过pycharm导入 2,在终端通过pip安装 3,通过第三方python库安装 总结 以pygame模块举例 1,通过pycharm导入 (1)直接点击install package pygame就可以 出现以下情况则安装正确 如果出现错误可以试试把pip文件升级到最新 (2)通过python interpreter安装 步骤:File-Setting-python interprete 点击加号 搜索到pygame模块后点击install Package就

随机推荐