Java多线程阻塞与唤醒代码示例

java线程的阻塞及唤醒

1. sleep() 方法:

sleep(…毫秒),指定以毫秒为单位的时间,使线程在该时间内进入线程阻塞状态,期间得不到cpu的时间片,等到时间过去了,线程重新进入可执行状态。(暂停线程,不会释放锁)

//测试sleep()方法
class Thread7 implements Runnable{
  @Override
  public void run() {
    for(int i=0;i<50;i++){
      System.out.println(Thread.currentThread().getName()+"num="+i);
      try {
        Thread.sleep(500);
      } catch (InterruptedException e) {
        e.printStackTrace();
      }
    }
  }
}
class Thread8 implements Runnable{
  @Override
  public void run() {
    for(int i=0;i<1000;i++){
      System.out.println(Thread.currentThread().getName()+"num="+i);
    }
  }
}
public static void main(String[] args) {
    /*
     * 测试线程阻塞
     */
    //测试sleep()方法
    Thread7 t7=new Thread7();
    Thread8 t8=new Thread8();
    Thread t81=new Thread(t8, "饺子");
    Thread t71=new Thread(t7, "包子");
    Thread t72=new Thread(t7, "面包");
    t71.start();
    t81.start();
    t72.start();
  }

2.suspend() 和 resume() 方法:。

挂起和唤醒线程,suspend()使线程进入阻塞状态,只有对应的resume()被调用的时候,线程才会进入可执行状态。(不建议用,容易发生死锁)

//测试suspend()和resume()方法
class Thread9 implements Runnable{
  @Override
  public void run() {
    for(long i=0;i<500000000;i++){
System.out.println(Thread.currentThread().getName()+" num= "+i);
    }
  }
}
public static void main(String[] args) {
  //测试suspend和resume
    Thread9 t9=new Thread9();
    Thread t91=new Thread(t9,"包子");
    t91.start();
    try {
      Thread.sleep(2000);
    } catch (InterruptedException e) {
      // TODO Auto-generated catch block
      e.printStackTrace();
    }
    t91.suspend();
    try {
      Thread.sleep(2000);
    } catch (InterruptedException e) {
      // TODO Auto-generated catch block
      e.printStackTrace();
    }
    t91.resume();
}

(在控制台打印输出的时候,会停顿2秒钟,然后再继续打印。)

3. yield() 方法:

会使的线程放弃当前分得的cpu时间片,但此时线程任然处于可执行状态,随时可以再次分得cpu时间片。yield()方法只能使同优先级的线程有执行的机会。调用 yield() 的效果等价于调度程序认为该线程已执行了足够的时间从而转到另一个线程。(暂停当前正在执行的线程,并执行其他线程,且让出的时间不可知)

//测试yield()方法
class Thread10 implements Runnable{
  @Override
  public void run() {
    for(int i=0;i<100;i++){
      System.out.println(Thread.currentThread().getName()+" num= "+i);
      if(i==33){
        Thread.yield();
      }
    }
  }
}

public static void main(String[] args) {
  //测试yield
    Thread10 t10 =new Thread10();
    Thread t101=new Thread(t10, "包子");
    Thread t102=new Thread(t10, "面包");
    t101.start();
    t102.start();
}
/*
运行结果为:
……
包子 num= 24
包子 num= 25
包子 num= 26
包子 num= 27
包子 num= 28
包子 num= 29
包子 num= 30
包子 num= 31
包子 num= 32
包子 num= 33
面包 num= 0
面包 num= 1
面包 num= 2
面包 num= 3
……
面包 num= 30
面包 num= 31
面包 num= 32
面包 num= 33
包子 num= 34
包子 num= 35
包子 num= 36
包子 num= 37
包子 num= 38
……
*/

(可以看到,当数字为33时,都发生了交替。)

4.wait() 和 notify() 方法:

两个方法搭配使用,wait()使线程进入阻塞状态,调用notify()时,线程进入可执行状态。wait()内可加或不加参数,加参数时是以毫秒为单位,当到了指定时间或调用notify()方法时,进入可执行状态。(属于Object类,而不属于Thread类,wait( )会先释放锁住的对象,然后再执行等待的动作。由于wait( )所等待的对象必须先锁住,因此,它只能用在同步化程序段或者同步化方法内,否则,会抛出异常IllegalMonitorStateException.)

//测试wait()和notify()方法
//用生产者和消费者模式模拟这一过程
/*消费者 */
class Consumer implements Runnable {
private Vector obj;
  public Consumer(Vector v) {
    this.obj = v;
  }
  public void run() {
    synchronized (obj) {
      while (true) {
        try {
          if (obj.size() == 0) {
            obj.wait();
          }
          System.out.println("消费者:我要买面包。");
          System.out.println("面包数: " + obj.size());
          obj.clear();
          obj.notify();
        } catch (Exception e) {
          e.printStackTrace();
        }
      }
    }
  }
}
/* 生产者 */
class Producter implements Runnable {
  private Vector obj;
  public Producter(Vector v) {
    this.obj = v;
  }
  public void run() {
    synchronized (obj) {
      while (true) {
        try {
          if (obj.size() != 0) {
            obj.wait();
          }
          obj.add(new String("面包"));
          obj.notify();
          System.out.println("生产者:面包做好了。");
          Thread.sleep(500);
        } catch (Exception e) {
          e.printStackTrace();
        }
      }
    }
  }
}
public static void main(String[] args) {
  //测试wait()和notify()
    Vector obj = new Vector();
    Thread consumer = new Thread(new Consumer(obj));
    Thread producter = new Thread(new Producter(obj));
    consumer.start();
    producter.start();
}

5.join()方法

也叫线程加入。是当前线程A调用另一个线程B的join()方法,当前线程转A入阻塞状态,直到线程B运行结束,线程A才由阻塞状态转为可执行状态。

//测试join
class Thread11 implements Runnable{
  @Override
  public void run() {
    System.out.println("Start Progress.");
    try {
      for(int i=0;i<5;i++){
        System.out.println("Thread11线程 : "+i);
        Thread.sleep(1000);
      }
    } catch (InterruptedException e) {
      // TODO Auto-generated catch block
      e.printStackTrace();
    }
    System.out.println("End Progress.");
  }
}
public static void main(String[] args) {
  //测试join
    Thread11 t11=new Thread11();
    Thread t111=new Thread(t11);
    t111.start();
    try {
      t111.join();
    } catch (InterruptedException e) {
      // TODO Auto-generated catch block
      e.printStackTrace();
    }
    System.out.println("hi,I'm Main线程");
}
/*
运行结果为:
Start Progress.
Thread11线程 : 0
Thread11线程 : 1
Thread11线程 : 2
Thread11线程 : 3
Thread11线程 : 4
End Progress.
hi,I'm Main线程
*/

总结

本文关于Java多线程阻塞与唤醒代码示例的介绍就到这里,希望对大家学习Java有所帮助。感兴趣的朋友可以继续参阅:Java多线程ForkJoinPool实例详解 、 Java通过卖票理解多线程 、 Java线程安全基础概念解析等。有什么问题可以随时留言,或者有什么方面想要了解的,您也可以留言,小编会及时给您答复。希望大家对我们多多支持!

(0)

相关推荐

  • Java多线程ForkJoinPool实例详解

    引言 java 7提供了另外一个很有用的线程池框架,Fork/Join框架 理论 Fork/Join框架主要有以下两个类组成. * ForkJoinPool 这个类实现了ExecutorService接口和工作窃取算法(Work-Stealing Algorithm).它管理工作者线程,并提供任务的状态信息,以及任务的执行信息 * ForkJoinTask 这个类是一个将在ForkJoinPool执行的任务的基类. Fork/Join框架提供了在一个任务里执行fork()和join()操作的机制

  • Java基于Socket实现简单的多线程回显服务器功能示例

    本文实例讲述了Java基于Socket实现简单的多线程回显服务器功能.分享给大家供大家参考,具体如下: 需要两个类,一个是EchoServer,代表服务器.另外一个是EchoServerClient,代表客户端.代码如下: package interview; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter

  • Java通过卖票理解多线程

    以卖票的例子来介绍多线程和资源共享,下面我们来看看为什么要用卖票作为例子. 卖票是包含一系列动作的过程,有各种操作,例如查询票.收钱.数钱.出票等,其中有一个操作是每次卖掉一张,就将总的票数减去1.有10张票,如果一个人卖票,先做查票.收钱.数钱等各种操作,再将总的票数减去1,效率很低.如果多个人卖票,每个人都是做同样的操作,数钱.检查钱,最后将总的票数减1,这样效率高.但是有一个问题,如果出现两个人同时将总的票数减掉了1,例如,A.B两个人同时读取到票的总数是10,A从中减去1,同时B也从中减

  • Java多线程用法的实例详解

    Java多线程用法的实例详解 前言: 最全面的java多线程用法解析,如果你对Java的多线程机制并没有深入的研究,那么本文可以帮助你更透彻地理解Java多线程的原理以及使用方法. 1.创建线程 在Java中创建线程有两种方法:使用Thread类和使用Runnable接口.在使用Runnable接口时需要建立一个Thread实例.因此,无论是通过Thread类还是Runnable接口建立线程,都必须建立Thread类或它的子类的实例.Thread构造函数: public Thread( ); p

  • RxJava2.x+ReTrofit2.x多线程下载文件的示例代码

    写在前面: 接到公司需求:要做一个apk升级的功能,原理其实很简单,百度也一大堆例子,可大部分都是用框架,要么就是HttpURLConnection,实在是不想这么干.正好看了两天的RxJava2.x+ReTrofit2.x,据说这俩框架是目前最火的异步请求框架了.固本文使用RxJava2.x+ReTrofit2.x实现多线程下载文件的功能. 如果对RxJava2.x+ReTrofit2.x不太了解的请先去看相关的文档. 大神至此请无视. 思路分析: 思路及其简洁明了,主要分为以下四步 1.获取

  • 详解java中的互斥锁信号量和多线程等待机制

    互斥锁和信号量都是操作系统中为并发编程设计基本概念,互斥锁和信号量的概念上的不同在于,对于同一个资源,互斥锁只有0和1 的概念,而信号量不止于此.也就是说,信号量可以使资源同时被多个线程访问,而互斥锁同时只能被一个线程访问 互斥锁在java中的实现就是 ReetranLock , 在访问一个同步资源时,它的对象需要通过方法 tryLock() 获得这个锁,如果失败,返回 false,成功返回true.根据返回的信息来判断是否要访问这个被同步的资源.看下面的例子 public class Reen

  • Java多线程阻塞与唤醒代码示例

    java线程的阻塞及唤醒 1. sleep() 方法: sleep(-毫秒),指定以毫秒为单位的时间,使线程在该时间内进入线程阻塞状态,期间得不到cpu的时间片,等到时间过去了,线程重新进入可执行状态.(暂停线程,不会释放锁) //测试sleep()方法 class Thread7 implements Runnable{ @Override public void run() { for(int i=0;i<50;i++){ System.out.println(Thread.currentT

  • 浅谈Java多线程的优点及代码示例

    尽管面临很多挑战,多线程有一些优点使得它一直被使用.这些优点是: 资源利用率更好 程序设计在某些情况下更简单 程序响应更快 资源利用率更好 想象一下,一个应用程序需要从本地文件系统中读取和处理文件的情景.比方说,从磁盘读取一个文件需要5秒,处理一个文件需要2秒.处理两个文件则需要: 5秒读取文件A 2秒处理文件A 5秒读取文件B 2秒处理文件B --------------------- 总共需要14秒 从磁盘中读取文件的时候,大部分的CPU时间用于等待磁盘去读取数据.在这段时间里,CPU非常的

  • Java多线程Callable接口实现代码示例

    对于多线程,大家并不陌生,对于如何创建线程也是轻车熟路,对于使用new thread和实现runable接口的方式,不再多说.这篇博文我们介绍第三种:实现Callable接口. Callable接口 接口定义: @FunctionalInterface public interface Callable<V> { V call() throws Exception; } 从Callable的定义可以看出: Callable接口类似于Runnable,两者都是为那些其实例可能被另一个线程执行的类

  • Java多线程编程实现socket通信示例代码

    流传于网络上有关Java多线程通信的编程实例有很多,这一篇还算比较不错,代码可用.下面看看具体内容. TCP是Tranfer Control Protocol的 简称,是一种面向连接的保证可靠传输的协议.通过TCP协议传输,得到的是一个顺序的无差错的数据流.发送方和接收方的成对的两个socket之间必须建 立连接,以便在TCP协议的基础上进行通信,当一个socket(通常都是server socket)等待建立连接时,另一个socket可以要求进行连接,一旦这两个socket连接起来,它们就可以

  • Java创建与结束线程代码示例

    本文讲述了在Java中如何创建和结束线程的最基本方法,只针对于Java初学者.一些高级知识如线程同步.调度.线程池等内容将会在后续章节中逐步深入. 创建线程 创建普通线程有两种方式,继承Thread类或实现Runnable接口.示例如下. 方法1:继承Thread类 创建方法示例: public class MyThread1 extends Thread { @Override public void run() { //TODO Auto-generated method stub supe

  • java并发编程之同步器代码示例

    同步器是一些使线程能够等待另一个线程的对象,允许它们协调动作.最常用的同步器是CountDownLatch和Semaphore,不常用的是Barrier和Exchanger 队列同步器AbstractQueuedSynchronizer是用来构建锁或者其他同步组件的基础框架,它内部使用了一个volatiole修饰的int类型的成员变量state来表示同步状态,通过内置的FIFO队列来完成资源获取线程的排队工作. 同步器的主要使用方式是继承,子类通过继承同步器并实现它的抽象方法来管理同步状态,在抽

  • Java将字符串写入文本文件代码示例

    一.Filewriter与File---将字符串写入文本文件 public static void main(String[] args) { File f=new File("C:\\world.txt");//新建一个文件对象,如果不存在则创建一个该文件 FileWriter fw; try { fw=new FileWriter(f); String str="hello world"; fw.write(str);//将字符串写入到指定的路径下的文件中 fw

  • 以银行取钱为例模拟Java多线程同步问题完整代码

    简单了解下在操作系统中进程和线程的区别: 进程:每个进程都有独立的代码和数据空间(进程上下文),进程间的切换会有较大的开销,一个进程包含1--n个线程.(进程是资源分配的最小单位) 线程:同一类线程共享代码和数据空间,每个线程有独立的运行栈和程序计数器(PC),线程切换开销小.(线程是cpu调度的最小单位) 线程和进程一样分为五个阶段:创建.就绪.运行.阻塞.终止. 多进程是指操作系统能同时运行多个任务(程序). 多线程是指在同一程序中有多个顺序流在执行.首先存钱取钱的这个操作,应该是线程操作的

  • Java语言实现反转链表代码示例

    问题描述 定义一个函数,输入一个链表的头结点,反转该链表并输出反转后的链表的头结点.链表结点如下: public class ListNode { int val; ListNode next = null; ListNode(int val) { this.val = val; } } 思路1: 要想反转链表,对于结点i,我们要把它的next指向它的前趋,因此我们需要保存前趋结点,同时,如果我们已经把i的next重新赋值,会无法找到i的后继,因此,在重新赋值之前,我们要保存i的后继. 代码:

  • Java实现四则混合运算代码示例

    使用栈来实现,可以处理运算优先级. 使用自然四则运算表达式即可,如:4+(3*(3-1)+2)/2.无需把表达式先转换为逆波兰等形式. package com.joshua.cal; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.List; import java.util.Map; im

随机推荐