浅谈MySQL的B树索引与索引优化小结

MySQL的MyISAM、InnoDB引擎默认均使用B+树索引(查询时都显示为“BTREE”),本文讨论两个问题:

  1. 为什么MySQL等主流数据库选择B+树的索引结构?
  2. 如何基于索引结构,理解常见的MySQL索引优化思路?

为什么索引无法全部装入内存

索引结构的选择基于这样一个性质:大数据量时,索引无法全部装入内存。

为什么索引无法全部装入内存?假设使用树结构组织索引,简单估算一下:

  1. 假设单个索引节点12B,1000w个数据行,unique索引,则叶子节点共占约100MB,整棵树最多200MB。
  2. 假设一行数据占用200B,则数据共占约2G。

假设索引存储在内存中。也就是说,每在物理盘上保存2G的数据,就要占用200MB的内存,索引:数据的占用比约为1/10。1/10的占用比算不算大呢?物理盘比内存廉价的多,以一台内存16G硬盘1T的服务器为例,如果要存满1T的硬盘,至少需要100G的内存,远大于16G。

考虑到一个表上可能有多个索引、联合索引、数据行占用更小等情况,实际的占用比通常大于1/10,某些时候能达到1/3。在基于索引的存储架构中,索引:数据的占用比过高,因此,索引无法全部装入内存。

其他结构的问题

由于无法装入内存,则必然依赖磁盘(或SSD)存储。而内存的读写速度是磁盘的成千上万倍(与具体实现有关),因此,核心问题是“如何减少磁盘读写次数”。

首先不考虑页表机制,假设每次读、写都直接穿透到磁盘,那么:

  1. 线性结构:读/写平均O(n)次
  2. 二叉搜索树(BST):读/写平均O(log2(n))次;如果树不平衡,则最差读/写O(n)次
  3. 自平衡二叉搜索树(AVL):在BST的基础上加入了自平衡算法,读/写最大O(log2(n))次
  4. 红黑树(RBT):另一种自平衡的查找树,读/写最大O(log2(n))次

BST、AVL、RBT很好的将读写次数从O(n)优化到O(log2(n));其中,AVL和RBT都比BST多了自平衡的功能,将读写次数降到最大O(log2(n))。

假设使用自增主键,则主键本身是有序的,树结构的读写次数能够优化到树高,树高越低读写次数越少;自平衡保证了树结构的稳定。如果想进一步优化,可以引入B树和B+树。

B树解决了什么问题

很多文章将B树误称为B-(减)树,这可能是对其英文名“B-Tree”的误解(更有甚者,将B树称为二叉树或二叉搜索树)。特别是与B+树一起讲的时候。想当然的认为有B+(加)树就有B-(减)树,实际上B+树的英文名是“B+-Tree”。

如果抛开维护操作,那么B树就像一棵“m叉搜索树”(m是子树的最大个数),时间复杂度为O(logm(n))。然而,B树设计了一种高效简单的维护操作,使B树的深度维持在约log(ceil(m/2))(n)~logm(n)之间,大大降低树高。

再次强调:

不要纠结于时间复杂度,与单纯的算法不同,磁盘IO次数才是更大的影响因素。读者可以推导看看,B树与AVL的时间复杂度是相同的,但由于B树的层数少,磁盘IO次数少,实践中B树的性能要优于AVL等二叉树。

同二叉搜索树类似,每个节点存储了多个key和子树,子树与key按顺序排列。

页表的目录是扩展外存+加速磁盘读写,一个页(Page)通常4K(等于磁盘数据块block的大小,见inode与block的分析),操作系统每次以页为单位将内容从磁盘加载到内存(以摊分寻道成本),修改页后,再择期将该页写回磁盘。考虑到页表的良好性质,可以使每个节点的大小约等于一个页(使m非常大),这每次加载的一个页就能完整覆盖一个节点,以便选择下一层子树;对子树同理。对于页表来说,AVL(或RBT)相当于1个key+2个子树的B树,由于逻辑上相邻的节点,物理上通常不相邻,因此,读入一个4k页,页面内绝大部分空间都将是无效数据。

假设key、子树节点指针均占用4B,则B树节点最大m * (4 + 4) = 8m B;页面大小4KB。则m = 4 * 1024 / 8m = 512,一个512叉的B树,1000w的数据,深度最大 log(512/2)(10^7) = 3.02 ~= 4。对比二叉树如AVL的深度为log(2)(10^7) = 23.25 ~= 24,相差了5倍以上。震惊!B树索引深度竟然如此!

另外,B树对局部性原理非常友好。如果key比较小(比如上面4B的自增key),则除了页表的加成,缓存还能进一步预读加速。美滋滋~

B+树解决了什么问题

B树的剩余问题

然而,如果要实际应用到数据库的索引中,B树还有一些问题:

  1. 未定位数据行
  2. 无法处理范围查询

问题1

数据表的记录有多个字段,仅仅定位到主键是不够的,还需要定位到数据行。有3个方案解决:

  1. 直接将key对应的数据行(可能对应多行)存储子节点中。
  2. 数据行单独存储;节点中增加一个字段,定位key对应数据行的位置。
  3. 修改key与子树的判断逻辑,使子树大于等于上一key小于下一key,最终所有访问都将落于叶子节点;叶子节点中直接存储数据行或数据行的位置。

方案1直接pass,存储数据行将减少页面中的子树个数,m减小树高增大。

方案2的节点中增加了一个字段,假设是4B的指针,则新的m = 4 * 1024 / 12m = 341.33 ~= 341,深度最大 log(341/2)(10^7) = 3.14 ~= 4。

方案3的节点m与深度不变,但时间复杂度变为稳定的O(logm(n))。

方案3可以考虑。

问题2

实际业务中,范围查询的频率非常高,B树只能定位到一个索引位置(可能对应多行),很难处理范围查询。改动较小的是2个

方案:

  1. 不改动;查询的时候先查到左界,再查到右界,然后DFS(或BFS)遍历左界、右界之间的节点。
  2. 在“问题1-方案3”的基础上,由于所有数据行都存储在叶子节点,B树的叶子节点本身也是有序的,可以增加一个指针,指向当前叶子节点按主键顺序的下一叶子节点;查询时先查到左界,再查到右界,然后从左界到有界线性遍历。

乍一看感觉方案1比方案2好——时间复杂度和常数项都一样,方案1还不需要改动。但是别忘了局部性原理,不管节点中存储的是数据行还是数据行位置,方案2的好处在于,依然可以利用页表和缓存预读下一节点的信息。而方案1则面临节点逻辑相邻、物理分离的缺点。

引出B+树

综上,问题1的方案2与问题2的方案1可整合为一种方案(基于B树的索引),问题1的方案3与问题2的方案2可整合为一种(基于B+树的索引)。实际上,数据库、文件系统有些采用了B树,有些采用B+树。

由于某些猴子暂未明白的原因,包括MySQL在内的主流数据库多选择了B+树。即:

主要变动如上所述:

  1. 修改key与子树的组织逻辑,将索引访问都落到叶子节点
  2. 按顺序将叶子节点串起来(方便范围查询)

B树和B+树的增、删、查过程

B树的增删过程暂时可参考从B树、B+树、B*树谈到R 树的“6、B树的插入、删除操作”小节,B+树的增删同理。此处暂不赘述。

Mysql索引优化

根据B+树的性质,很容易理解各种常见的MySQL索引优化思路。

暂不考虑不同引擎之间的区别。

优先使用自增key作为主键

前面的分析中,假设用4B的自增key作为索引,则m可达到512,层高仅有3。使用自增的key有两个好处:

自增key一般为int等整数型,key比较紧凑,这样m可以非常大,而且索引占用空间小。最极端的例子,如果使用50B的varchar(包括长度),那么m = 4 * 1024 / 54m = 75.85 ~= 76,深度最大 log(76/2)(10^7) = 4.43 ~= 5,再加上cache缺失、字符串比较的成本,时间成本增加较大。同时,key由4B增长到50B,整棵索引树的空间占用增长也是极为恐怖的(如果二级索引使用主键定位数据行,则空间增长更加严重)。

自增的性质使得新数据行的插入请求必然落到索引树的最右侧,发生节点分裂的频率较低,理想情况下,索引树可以达到“满”的状态。索引树满,一方面层高更低,一方面删除节点时发生节点合并的频率也较低。

优化经历:

猴子曾使用varchar(100)的列做过主键,存储containerId,过了3、4天100G的数据库就满了,DBA小姐姐邮件里委婉表示了对我的鄙视。。。之后增加了自增列作为主键,containerId作为unique的二级索引,时间、空间优化效果相当显著。

最左前缀匹配

索引可以简单如一个列(a),也可以复杂如多个列(a, b, c, d),即联合索引。如果是联合索引,那么key也由多个列组成,同时,索引只能用于查找key是否存在(相等),遇到范围查询(>、<、between、like左匹配)等就不能进一步匹配了,后续退化为线性查找。因此,列的排列顺序决定了可命中索引的列数。

如有索引(a, b, c, d),查询条件a = 1 and b = 2 and c > 3 and d = 4,则会在每个节点依次命中a、b、c,无法命中d。也就是最左前缀匹配原则。

=、in自动优化顺序

不需要考虑=、in等的顺序,mysql会自动优化这些条件的顺序,以匹配尽可能多的索引列。

如有索引(a, b, c, d),查询条件c > 3 and b = 2 and a = 1 and d < 4与a = 1 and c > 3 and b = 2 and d < 4等顺序都是可以的,MySQL会自动优化为a = 1 and b = 2 and c > 3 and d < 4,依次命中a、b、c。

索引列不能参与计算

有索引列参与计算的查询条件对索引不友好(甚至无法使用索引),如from_unixtime(create_time) = '2014-05-29'。

原因很简单,如何在节点中查找到对应key?如果线性扫描,则每次都需要重新计算,成本太高;如果二分查找,则需要针对from_unixtime方法确定大小关系。

因此,索引列不能参与计算。上述from_unixtime(create_time) = '2014-05-29'语句应该写成create_time = unix_timestamp('2014-05-29')。

能扩展就不要新建索引

如果已有索引(a),想建立索引(a, b),尽量选择修改索引(a)为索引(a, b)。

新建索引的成本很容易理解。而基于索引(a)修改为索引(a, b)的话,MySQL可以直接在索引a的B+树上,经过分裂、合并等修改为索引(a, b)。

不需要建立前缀有包含关系的索引

如果已有索引(a, b),则不需要再建立索引(a),但是如果有必要,则仍然需考虑建立索引(b)。

选择区分度高的列作索引

很容易理解。如,用性别作索引,那么索引仅能将1000w行数据划分为两部分(如500w男,500w女),索引几乎无效。

区分度的公式是count(distinct <col>) / count(*),表示字段不重复的比例,比例越大区分度越好。唯一键的区分度是1,而一些状态、性别字段可能在大数据面前的区分度趋近于0。

这个值很难确定,一般需要join的字段要求是0.1以上,即平均1条扫描10条记录。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • 完整B树算法Java实现代码
  • c语言B树深入理解
(0)

相关推荐

  • 完整B树算法Java实现代码

    定义 在计算机科学中,B树(英语:B-tree)是一种自平衡的树,能够保持数据有序.这种数据结构能够让查找数据.顺序访问.插入数据及删除的动作,都在对数时间内完成. 为什么要引入B树? 首先,包括前面我们介绍的红黑树是将输入存入内存的一种内部查找树. 而B树是前面平衡树算法的扩展,它支持保存在磁盘或者网络上的符号表进行外部查找,这些文件可能比我们以前考虑的输入要大的多(难以存入内存). 既然内容保存在磁盘中,那么自然会因为树的深度过大而造成磁盘I/O读写过于频繁(磁盘读写速率是有限制的),进而导

  • c语言B树深入理解

    B树是为磁盘或其他直接存储设备设计的一种平衡查找树.如下图所示.每一个结点箭头指向的我们称为入度,指出去的称为出度.树结构的结点入度都是1,不然就变成图了,所以我们一般说树的度就是指树结点的出度,也就是一个结点的子结点个数.有了度的概念我们就简单定义一下B树(假设一棵树的最小度数为M):1.每个结点至少有M-1个关键码,至多有2M-1个关键码:2.除根结点和叶子结点外,每个结点至少有M个子结点,至多有2M个子结点:3.根结点至少有2个子结点,唯一例外是只有根结点的情况,此时没有子结点:4.所有叶

  • 浅谈MySQL的B树索引与索引优化小结

    MySQL的MyISAM.InnoDB引擎默认均使用B+树索引(查询时都显示为"BTREE"),本文讨论两个问题: 为什么MySQL等主流数据库选择B+树的索引结构? 如何基于索引结构,理解常见的MySQL索引优化思路? 为什么索引无法全部装入内存 索引结构的选择基于这样一个性质:大数据量时,索引无法全部装入内存. 为什么索引无法全部装入内存?假设使用树结构组织索引,简单估算一下: 假设单个索引节点12B,1000w个数据行,unique索引,则叶子节点共占约100MB,整棵树最多20

  • 浅谈MySQL和Lucene索引的对比分析

    MySQL和Lucene都可以对数据构建索引并通过索引查询数据,一个是关系型数据库,一个是构建搜索引擎(Solr.ElasticSearch)的核心类库.两者的索引(index)有什么区别呢?以前写过一篇<Solr与MySQL查询性能对比>,只是简单的对比了下查询性能,对于内部原理却没有解释,本文简单分析下两者的索引区别. MySQL索引实现 在MySQL中,索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式是不同的,本文主要讨论MyISAM和InnoDB两个存储引擎的索引实现方式. M

  • 浅谈mysql增加索引不生效的几种情况

    增加索引可以提高查询效率. 增加索引就是增加一个索引文件,存放的是数据的地址,类似与我们文档的目录,在查找过程中可以不用从书的内容查找,直接根据目录对应的页码查找.索引是根据地址查找. 创建索引,索引使用的数据结构也有很多种.常见的是B-tree,哈希等.mysql默认使用的数据库索引是innerDB,innerDB的索引结构是B-tree. 但是在使用过程中哪些情况增加索引无法达到预期的效果呢?下面列举几种常见情况: 假设name age address 都已经加了索引.索引名字分别为 ind

  • 浅谈Mysql主键索引与非主键索引区别

    目录 什么是索引 主键索引和普通索引的区别 索引具体采用的哪种数据结构 InnoDB使用的B+ Tree的索引模型,那么为什么采用B+ 树?这和Hash索引比较起来有什么优缺点? B+ Tree的叶子节点都可以存哪些东西? 聚簇索引和非聚簇索引,在查询数据的时候有区别? Index Condition Pushdown(索引下推) 查询优化器 关于索引的题 什么是索引 MySql官方索引的定义:索引(Index)是帮助MySql高效获取数据的数据结构,索引的目的在于提高查询效率,类比字典:实际上

  • 浅谈mysql的索引设计原则以及常见索引的区别

    索引定义:是一个单独的,存储在磁盘上的数据库结构,其包含着对数据表里所有记录的引用指针. 数据库索引的设计原则: 为了使索引的使用效率更高,在创建索引时,必须考虑在哪些字段上创建索引和创建什么类型的索引. 那么索引设计原则又是怎样的? 1.选择唯一性索引 唯一性索引的值是唯一的,可以更快速的通过该索引来确定某条记录. 例如,学生表中学号是具有唯一性的字段.为该字段建立唯一性索引可以很快的确定某个学生的信息. 如果使用姓名的话,可能存在同名现象,从而降低查询速度. 2.为经常需要排序.分组和联合操

  • 浅谈Mysql哪些字段适合建立索引

    1 数据库建立索引常用的规则如下: 1.表的主键.外键必须有索引: 2.数据量超过300的表应该有索引: 3.经常与其他表进行连接的表,在连接字段上应该建立索引: 4.经常出现在Where子句中的字段,特别是大表的字段,应该建立索引: 5.索引应该建在选择性高的字段上: 6.索引应该建在小字段上,对于大的文本字段甚至超长字段,不要建索引: 7.复合索引的建立需要进行仔细分析:尽量考虑用单字段索引代替: A.正确选择复合索引中的主列字段,一般是选择性较好的字段: B .复合索引的几个字段是否经常同

  • 浅谈MySql整型索引和字符串索引失效或隐式转换问题

    目录 问题概述 问题重现 问题引申 结论 问题概述 今天在上班时,DBA突然找出来一段sql,表示该sql存在隐式转换,不走索引.经过我们的查看后,发现是类型varchar的字段, 我们使用条件传入了数值型的值,由于担心违反保密协议,在此就不贴图了,由我重现一下类似情况给大家看一下. 问题重现 首先我们先创建一张用户表test_user,其中USER_ID为了效果我们设置为varchar类型且加上唯一索引. CREATE TABLE test_user ( ID int(11) NOT NULL

  • 浅谈mysql哪些情况会导致索引失效

    下面有一些培训教学机构的口诀和我个人的一些总结: 为了讲解以下索引内容,我们先建立一个临时的表 test02 CREATE TABLE `sys_user` ( `id` varchar(64) NOT NULL COMMENT '主键', `name` varchar(64) DEFAULT NULL COMMENT '名字', `age` int(64) DEFAULT NULL COMMENT '年龄', `pos` varchar(64) DEFAULT NULL COMMENT '职位

  • 浅谈MySQL为什么会选错索引

    目录 1.引例 2.优化器的逻辑 3.解决办法 1.引例 首先创建一张表,并对字段a,b分别建立索引: create table t ( id int(11) not null, a int(11) default null, b int(11) default null, primary key (id), key a(a), key b(b) )engine=InnoDB; 然后往表中,插入十万行数据,值按整数递增:(1,1,1).(2,2,2).(3,3,3)… delimiter ;;

  • 浅谈MySQL 统计行数的 count

    MySQL count() 函数我们并不陌生,用来统计每张表的行数.但如果你的表越来越大,且是 InnoDB 引擎的话,会发现计算的速度会越来越慢.在这篇文章里,会先介绍 count() 实现的原理及原因,然后是 count 不同用法的性能分析,最后给出需要频繁改变并需要统计表行数的解决方案. Count() 的实现 InnoDB 和 MyISAM 是 MySQL 常用的数据引擎,由于两者实现的不同,导致 count() 操作计算的效率也不同. 对于 MyISAM 来说,它把每个表的总行数都存在

随机推荐