Javascript图像处理—平滑处理实现原理

前言

上一篇文章,我们讲解了图像的虚拟边缘,这篇文章开始进行平滑(也就是模糊)处理。

基本原理

这里直接引用OpenCV 2.4+ C++ 平滑处理和OpenCV 2.4+ C++ 边缘梯度计算的相关内容:

平滑也称模糊, 是一项简单且使用频率很高的图像处理方法。

平滑处理时需要用到一个滤波器

。 最常用的滤波器是线性
滤波器,线性滤波处理的输出像素值(例如:)是输入像素值(例如:)的加权平均:

    

称为核

, 它仅仅是一个加权系数。

这里涉及一种叫做“卷积”的运算,那么卷积是什么呢?

卷积是在每一个图像块与某个算子(核)之间进行的运算。

核?!

nbsp;
dsds

核就是一个固定大小的数值数组。该数组带有一个锚点

,一般位于数组中央。

可是这怎么运算啊?

假如你想得到图像的某个特定位置的卷积值,可用下列方法计算:

    将核的锚点放在该特定位置的像素上,同时,核内的其他值与该像素邻域的各像素重合;将核内各值与相应像素值相乘,并将乘积相加;将所得结果放到与锚点对应的像素上;对图像所有像素重复上述过程。

用公式表示上述过程如下:

    

在图像边缘的卷积怎么办呢?

计算卷积前,需要通过复制源图像的边界创建虚拟像素,这样边缘的地方也有足够像素计算卷积了。这就是为什么上一篇文章需要做虚拟边缘函数。

均值平滑

均值平滑实际上就是内核元素全是1的卷积运算,然后再除以内核的大小,用数学表达式来表示就是:

  

下面我们来实现均值平滑函数blur:


代码如下:

function blur(__src, __size1, __size2, __borderType, __dst){
if(__src.type && __src.type == "CV_RGBA"){
var height = __src.row,
width = __src.col,
dst = __dst || new Mat(height, width, CV_RGBA),
dstData = dst.data;
var size1 = __size1 || 3,
size2 = __size2 || size1,
size = size1 * size2;
if(size1 % 2 !== 1 || size2 % 2 !== 1){
console.error("size大小必须是奇数");
return __src;
}
var startX = Math.floor(size1 / 2),
startY = Math.floor(size2 / 2);
var withBorderMat = copyMakeBorder(__src, startY, startX, 0, 0, __borderType),
mData = withBorderMat.data,
mWidth = withBorderMat.col;

var newValue, nowX, offsetY, offsetI;
var i, j, c, y, x;

for(i = height; i--;){
offsetI = i * width;
for(j = width; j--;){
for(c = 3; c--;){
newValue = 0;
for(y = size2; y--;){
offsetY = (y + i) * mWidth * 4;
for(x = size1; x--;){
nowX = (x + j) * 4 + c;
newValue += mData[offsetY + nowX];
}
}
dstData[(j + offsetI) * 4 + c] = newValue / size;
}
dstData[(j + offsetI) * 4 + 3] = mData[offsetY + startY * mWidth * 4 + (j + startX) * 4 + 3];
}
}

}else{
console.error("不支持类型。");
}
return dst;
}

其中size1和size2分别是核的横向和纵向大小,并且必须是正奇数。

高斯平滑

最有用的滤波器 (尽管不是最快的)。 高斯滤波是将输入数组的每一个像素点与高斯内核

卷积将卷积和当作输出像素值。

参考一维高斯函数,我们可以看见,他是个中间大两边小的函数。

所以高斯滤波器其加权数是中间大,四周小的。

其二维高斯函数为:

    

其中

 为均值 (峰值对应位置),

 代表标准差 (变量
 和 变量
 各有一个均值,也各有一个标准差)。

这里参考OpenCV的实现,不过应该还有优化空间,因为还没用到分离滤波器。

首先我们做一个getGaussianKernel来返回高斯滤波器的一维数组。


代码如下:

function getGaussianKernel(__n, __sigma){
var SMALL_GAUSSIAN_SIZE = 7,
smallGaussianTab = [[1],
[0.25, 0.5, 0.25],
[0.0625, 0.25, 0.375, 0.25, 0.0625],
[0.03125, 0.109375, 0.21875, 0.28125, 0.21875, 0.109375, 0.03125]
];

var fixedKernel = __n & 2 == 1 && __n <= SMALL_GAUSSIAN_SIZE && __sigma <= 0 ? smallGaussianTab[__n >> 1] : 0;

var sigmaX = __sigma > 0 ? __sigma : ((__n - 1) * 0.5 - 1) * 0.3 + 0.8,
scale2X = -0.5 / (sigmaX * sigmaX),
sum = 0;

var i, x, t, kernel = [];

for(i = 0; i < __n; i++){
x = i - (__n - 1) * 0.5;
t = fixedKernel ? fixedKernel[i] : Math.exp(scale2X * x * x);
kernel[i] = t;
sum += t;
}

sum = 1 / sum;

for(i = __n; i--;){
kernel[i] *= sum;
}

return kernel;
};

然后通过两个这个一维数组,便可以计算出一个完整的高斯内核,再利用blur里面用到的循环方法,就可以算出高斯平滑后的矩阵了。


代码如下:

function GaussianBlur(__src, __size1, __size2, __sigma1, __sigma2, __borderType, __dst){
if(__src.type && __src.type == "CV_RGBA"){
var height = __src.row,
width = __src.col,
dst = __dst || new Mat(height, width, CV_RGBA),
dstData = dst.data;
var sigma1 = __sigma1 || 0,
sigma2 = __sigma2 || __sigma1;
var size1 = __size1 || Math.round(sigma1 * 6 + 1) | 1,
size2 = __size2 || Math.round(sigma2 * 6 + 1) | 1,
size = size1 * size2;
if(size1 % 2 !== 1 || size2 % 2 !== 1){
console.error("size必须是奇数。");
return __src;
}
var startX = Math.floor(size1 / 2),
startY = Math.floor(size2 / 2);
var withBorderMat = copyMakeBorder(__src, startY, startX, 0, 0, __borderType),
mData = withBorderMat.data,
mWidth = withBorderMat.col;

var kernel1 = getGaussianKernel(size1, sigma1),
kernel2,
kernel = new Array(size1 * size2);

if(size1 === size2 && sigma1 === sigma2)
kernel2 = kernel1;
else
kernel2 = getGaussianKernel(size2, sigma2);

var i, j, c, y, x;

for(i = kernel2.length; i--;){
for(j = kernel1.length; j--;){
kernel[i * size1 + j] = kernel2[i] * kernel1[j];
}
}

var newValue, nowX, offsetY, offsetI;

for(i = height; i--;){
offsetI = i * width;
for(j = width; j--;){
for(c = 3; c--;){
newValue = 0;
for(y = size2; y--;){
offsetY = (y + i) * mWidth * 4;
for(x = size1; x--;){
nowX = (x + j) * 4 + c;
newValue += (mData[offsetY + nowX] * kernel[y * size1 + x]);
}
}
dstData[(j + offsetI) * 4 + c] = newValue;
}
dstData[(j + offsetI) * 4 + 3] = mData[offsetY + startY * mWidth * 4 + (j + startX) * 4 + 3];
}
}

}else{
console.error("不支持的类型");
}
return dst;
}

中值平滑

中值滤波将图像的每个像素用邻域 (以当前像素为中心的正方形区域)像素的

中值代替 。

依然使用blur里面用到的循环,只要得到核中的所有值,再通过sort排序便可以得到中值,然后锚点由该值替代。


代码如下:

function medianBlur(__src, __size1, __size2, __borderType, __dst){
if(__src.type && __src.type == "CV_RGBA"){
var height = __src.row,
width = __src.col,
dst = __dst || new Mat(height, width, CV_RGBA),
dstData = dst.data;
var size1 = __size1 || 3,
size2 = __size2 || size1,
size = size1 * size2;
if(size1 % 2 !== 1 || size2 % 2 !== 1){
console.error("size必须是奇数");
return __src;
}
var startX = Math.floor(size1 / 2),
startY = Math.floor(size2 / 2);
var withBorderMat = copyMakeBorder(__src, startY, startX, 0, 0, __borderType),
mData = withBorderMat.data,
mWidth = withBorderMat.col;

var newValue = [], nowX, offsetY, offsetI;
var i, j, c, y, x;

for(i = height; i--;){
offsetI = i * width;
for(j = width; j--;){
for(c = 3; c--;){
for(y = size2; y--;){
offsetY = (y + i) * mWidth * 4;
for(x = size1; x--;){
nowX = (x + j) * 4 + c;
newValue[y * size1 + x] = mData[offsetY + nowX];
}
}
newValue.sort();
dstData[(j + offsetI) * 4 + c] = newValue[Math.round(size / 2)];
}
dstData[(j + offsetI) * 4 + 3] = mData[offsetY + startY * mWidth * 4 + (j + startX) * 4 + 3];
}
}

}else{
console.error("类型不支持");
}
return dst;
};

(0)

相关推荐

  • Javascript图像处理—虚拟边缘介绍及使用方法

    前言 上一篇文章,我们来给矩阵添加一些常用方法,这篇文章将讲解图像的虚拟边缘. 虚拟边缘 虚拟边缘就是按照一定映射关系,给图像添加边缘. 那么虚拟边缘有什么用呢?比如可以很容易做一个倒影的效果:  当然这只是附带效果了,虚拟边缘主要用在图像卷积运算(例如平滑操作)时候,由于卷积运算的特点,需要将图片扩大才能对边角进行卷积运算,这时候就需要对图片进行预处理,添加虚拟边缘. 说白了,就是在一些图片处理前进行预处理. 边缘类型 这里参考OpenCV相关文档的边缘描述: 复制代码 代码如下: /* Va

  • Javascript图像处理—亮度对比度应用案例

    前言 上一篇文章,我们讲解了图像处理中的卷积操作和平滑(也就是模糊)处理,这篇文章我们进行亮度和对比度的变化. 其实,亮度是啥玩意? 亮度就是比较亮眼咯-- 实际上对于RGBA颜色空间,变亮其实就等于R.G.B三个通道同时加大,那么变暗就等于同时减小咯. 这比较好理解,因为最暗的黑色是RGB(0,0,0),而最亮的白色是RGB(255,255,255).所以变亮应该RGB各通道都要增大. 那么,对比度呢? 对比度,其实就是颜色差啦. 那么对于RGBA颜色空间,对比度变大其实就等于R.G.B三个通

  • Javascript图像处理—阈值函数实例应用

    前言 上一篇文章,我们讲解了图像处理中的亮度和对比度的变化,这篇文章我们来做一个阈值函数. 最简单的图像分割方法 阈值是最简单的图像分割方法. 比如为了从下图中分割出苹果,我们利用前景与背景的灰度差值,通过设定一个阈值,对于该像素大于这个阈值时就以黑色表示,小于便以灰色表示. 五种阈值类型 和OpenCV一样,我们将提供五种阈值类型,方便使用. 下面是原图像的波形表示,纵坐标表示像素点的灰度值大小,蓝线是阈值大小. 二进制阈值化 公式表示是: \texttt{thresh}$}{0}{other

  • javascript图像处理—仿射变换深度理解

    前言 上一篇文章,我们讲解了图像金字塔,这篇文章我们来了解仿射变换. 仿射? 任何仿射变换都可以转换成,乘以一个矩阵(线性变化),再加上一个向量(平移变化). 实际上仿射是两幅图片的变换关系. 例如我们可以通过仿射变换对图片进行:缩放.旋转.平移等操作. 一个数学问题 在解决仿射问题前,我们来做一个数学题. 如图,对于点(x1, y1),相对于原点旋转一个角度a,那么这个点到哪里了呢? 我们将坐标系变成极坐标系,则点(x1, y1)就变成了(r, β),而旋转后变成(r, α+ β). 转回直角

  • Javascript图像处理思路及实现代码

    思路 HTML5的canvas提供了getImageData接口来获取canvas中的数据,所以我们能够先用drawImage接口将图片画在canvas上然后再通过getImageData得到图片数据矩阵. 需要注意,虽然IE9开始支持了canvas接口,但是其getImageData获取的数据并不是以标准的TypedArray方式存储的,或者说IE9没有提供对WebGL Native binary data的支持,所以如果需要对IE9支持,下面的矩阵需要用Array的方式保存.虽然IE9以下版

  • javascript图像处理—边缘梯度计算函数

    前言 上一篇文章,我们讲解了图像处理中的膨胀和腐蚀函数,这篇文章将做边缘梯度计算函数. 图像的边缘 图像的边缘从数学上是如何表示的呢? 图像的边缘上,邻近的像素值应当显著地改变了.而在数学上,导数是表示改变快慢的一种方法.梯度值的大变预示着图像中内容的显著变化了. 用更加形象的图像来解释,假设我们有一张一维图形.下图中灰度值的"跃升"表示边缘的存在: 使用一阶微分求导我们可以更加清晰的看到边缘"跃升"的存在(这里显示为高峰值): 由此我们可以得出:边缘可以通过定位梯

  • Javascript图像处理—为矩阵添加常用方法

    前言 上一篇文章,我们定义了矩阵,这篇文章我们来给矩阵添加一些常用方法. toString方法 toString方法通常用作将对象转成字符串描述,所以我们将这一方法定义为输出矩阵元素. 复制代码 代码如下: Mat.prototype.toString = function(){ var tempData = this.data, text = "Mat("+ this.type +") = {\n", num = this.col * this.channel;

  • java数字图像处理基础使用imageio写图像文件示例

    一个BufferedImage的像素数据储存在Raster中,ColorModel里面储存颜色空间,类型等信息,当前Java只支持一下三种图像格式- JPG,PNG,GIF,如何向让Java支持其它格式,首先要 完成Java中的图像读写接口,然后打成jar,加上启动参数- Xbootclasspath/pnewimageformatIO.jar即可. Java中如何读写一个图像文件,使用ImageIO对象即可.读图像文件的代码如下: 复制代码 代码如下: File file = new File

  • Java图像处理工具类

    本工具类的功能:缩放图像.切割图像.图像类型转换.彩色转黑白.文字水印.图片水印等 复制代码 代码如下: package net.kitbox.util; import java.awt.AlphaComposite; import java.awt.Color; import java.awt.Font; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Re

  • Javascript图像处理—图像形态学(膨胀与腐蚀)

    前言 上一篇文章,我们讲解了图像处理中的阈值函数,这一篇文章我们来做膨胀和腐蚀函数. 膨胀与腐蚀 说概念可能很难解释,我们来看图,首先是原图: 膨胀以后会变成这样: 腐蚀以后则会变成这样: 看起来可能有些莫名其妙,明明是膨胀,为什么字反而变细了,而明明是腐蚀,为什么字反而变粗了. 实际上,所谓膨胀应该指: 较亮色块膨胀. 而所谓腐蚀应该指: 较亮色块腐蚀. 上面图里面,由于背景白色是较亮色块,所以膨胀时就把黑色较暗色块的字压扁了--相反腐蚀时,字就吸水膨胀了-- 用数学公式表示就是: 说白了就是

随机推荐