IntelliJ IDEA下Maven创建Scala项目的方法步骤
环境:IntelliJ IDEA
版本:Spark-2.2.1 Scala-2.11.0
利用 Maven 第一次创建 Scala 项目也遇到了许多坑
创建一个 Scala 的 WordCount 程序
第一步:IntelliJ IDEA下安装 Scala 插件
安装完 Scala 插件完成
第二步:Maven 下 Scala 下的项目创建
正常创建 Maven 项目(不会的看另一篇 Maven 配置)
第三步:Scala 版本的下载及配置
通过Spark官网下载页面http://spark.apache.org/downloads.html 可知“Note: Starting version 2.0, Spark is built with Scala 2.11 by default.”,建议下载Spark2.2对应的 Scala 2.11。
登录Scala官网http://www.scala-lang.org/,单击download按钮,然后再“Other Releases”标题下找到“下载2.11.0
根据自己的系统下载相应的版本
接下来就是配置Scala 的环境变量(跟 jdk 的配置方法一样)
输入 Scala -version 查看是否配置成功 会显示 Scala code runner version 2.11.0 – Copyright 2002-2013, LAMP/EPFL
选择自己安装 Scala 的路径
第四步:编写 Scala 程序
将其他的代码删除,不然在编辑的时候会报错
配置 pom.xml文件
在里面添加一个 Spark
<properties> <scala.version>2.11.0</scala.version> <spark.version>2.2.1</spark.version> </properties> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>${spark.version}</version> </dependency>
具体的 pom.xml 内容
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>cn.spark</groupId> <artifactId>Spark</artifactId> <version>1.0-SNAPSHOT</version> <inceptionYear>2008</inceptionYear> <properties> <scala.version>2.11.0</scala.version> <spark.version>2.2.1</spark.version> </properties> <pluginRepositories> <pluginRepository> <id>scala-tools.org</id> <name>Scala-Tools Maven2 Repository</name> <url>http://scala-tools.org/repo-releases</url> </pluginRepository> </pluginRepositories> <dependencies> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>${scala.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.4</version> <scope>test</scope> </dependency> <dependency> <groupId>org.specs</groupId> <artifactId>specs</artifactId> <version>1.2.5</version> <scope>test</scope> </dependency> </dependencies> <build> <sourceDirectory>src/main/scala</sourceDirectory> <testSourceDirectory>src/test/scala</testSourceDirectory> <plugins> <plugin> <groupId>org.scala-tools</groupId> <artifactId>maven-scala-plugin</artifactId> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> </execution> </executions> <configuration> <scalaVersion>${scala.version}</scalaVersion> <args> <arg>-target:jvm-1.5</arg> </args> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-eclipse-plugin</artifactId> <configuration> <downloadSources>true</downloadSources> <buildcommands> <buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand> </buildcommands> <additionalProjectnatures> <projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature> </additionalProjectnatures> <classpathContainers> <classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer> <classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer> </classpathContainers> </configuration> </plugin> </plugins> </build> <reporting> <plugins> <plugin> <groupId>org.scala-tools</groupId> <artifactId>maven-scala-plugin</artifactId> <configuration> <scalaVersion>${scala.version}</scalaVersion> </configuration> </plugin> </plugins> </reporting> </project>
编写 WordCount 文件
package cn.spark import org.apache.spark.{SparkConf, SparkContext} /** * Created by hubo on 2018/1/13 */ object WordCount { def main(args: Array[String]) { var masterUrl = "local" var inputPath = "/Users/huwenbo/Desktop/a.txt" var outputPath = "/Users/huwenbo/Desktop/out" if (args.length == 1) { masterUrl = args(0) } else if (args.length == 3) { masterUrl = args(0) inputPath = args(1) outputPath = args(2) } println(s"masterUrl:$masterUrl, inputPath: $inputPath, outputPath: $outputPath") val sparkConf = new SparkConf().setMaster(masterUrl).setAppName("WordCount") val sc = new SparkContext(sparkConf) val rowRdd = sc.textFile(inputPath) val resultRdd = rowRdd.flatMap(line => line.split("\\s+")) .map(word => (word, 1)).reduceByKey(_ + _) resultRdd.saveAsTextFile(outputPath) } }
var masterUrl = “local”
local代表自己本地运行,在 hadoop 上运行添加相应地址
在配置中遇到的错误,会写在另一篇文章里。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。