梅尔倒谱系数(MFCC)实现

本文实例为大家分享了梅尔倒谱系数实现代码,供大家参考,具体内容如下

"""
@author: zoutai
@file: mymfcc.py
@time: 2018/03/26
@description:
"""
from matplotlib.colors import BoundaryNorm
import librosa
import librosa.display
import numpy
import scipy.io.wavfile
from scipy.fftpack import dct
import matplotlib.pyplot as plt
import numpy as np

# 第一步-读取音频,画出时域图(采样率-幅度)
sample_rate, signal = scipy.io.wavfile.read('OSR_us_000_0010_8k.wav') # File assumed to be in the same directory
signal = signal[0:int(3.5 * sample_rate)]
# plot the wave
time = np.arange(0,len(signal))*(1.0 / sample_rate)
# plt.plot(time,signal)
plt.xlabel("Time(s)")
plt.ylabel("Amplitude")
plt.title("Signal in the Time Domain ")
plt.grid('on')#标尺,on:有,off:无。

# 第二部-预加重
# 消除高频信号。因为高频信号往往都是相似的,
# 通过前后时间相减,就可以近乎抹去高频信号,留下低频信号。
# 原理:y(t)=x(t)−αx(t−1)

pre_emphasis = 0.97
emphasized_signal = numpy.append(signal[0], signal[1:] - pre_emphasis * signal[:-1])

time = np.arange(0,len(emphasized_signal))*(1.0 / sample_rate)
# plt.plot(time,emphasized_signal)
# plt.xlabel("Time(s)")
# plt.ylabel("Amplitude")
# plt.title("Signal in the Time Domain after Pre-Emphasis")
# plt.grid('on')#标尺,on:有,off:无。

# 第三步、取帧,用帧表示
frame_size = 0.025 # 帧长
frame_stride = 0.01 # 步长

# frame_length-一帧对应的采样数, frame_step-一个步长对应的采样数
frame_length, frame_step = frame_size * sample_rate, frame_stride * sample_rate # Convert from seconds to samples
signal_length = len(emphasized_signal) # 总的采样数

frame_length = int(round(frame_length))
frame_step = int(round(frame_step))

# 总帧数
num_frames = int(numpy.ceil(float(numpy.abs(signal_length - frame_length)) / frame_step)) # Make sure that we have at least 1 frame

pad_signal_length = num_frames * frame_step + frame_length
z = numpy.zeros((pad_signal_length - signal_length))
pad_signal = numpy.append(emphasized_signal, z) # Pad Signal to make sure that all frames have equal number of samples without truncating any samples from the original signal

# Construct an array by repeating A(200) the number of times given by reps(348).
# 这个写法太妙了。目的:用矩阵来表示帧的次数,348*200,348-总的帧数,200-每一帧的采样数
# 第一帧采样为0、1、2...200;第二帧为80、81、81...280..依次类推
indices = numpy.tile(numpy.arange(0, frame_length), (num_frames, 1)) + numpy.tile(numpy.arange(0, num_frames * frame_step, frame_step), (frame_length, 1)).T
frames = pad_signal[indices.astype(numpy.int32, copy=False)] # Copy of the array indices
# frame:348*200,横坐标348为帧数,即时间;纵坐标200为一帧的200毫秒时间,内部数值代表信号幅度

# plt.matshow(frames, cmap='hot')
# plt.colorbar()
# plt.figure()
# plt.pcolormesh(frames)

# 第四步、加汉明窗
# 傅里叶变换默认操作的时间段内前后端点是连续的,即整个时间段刚好是一个周期,
# 但是,显示却不是这样的。所以,当这种情况出现时,仍然采用FFT操作时,
# 就会将单一频率周期信号认作成多个不同的频率信号的叠加,而不是原始频率,这样就差生了频谱泄漏问题

frames *= numpy.hamming(frame_length) # 相乘,和卷积类似
# # frames *= 0.54 - 0.46 * numpy.cos((2 * numpy.pi * n) / (frame_length - 1)) # Explicit Implementation **

# plt.pcolormesh(frames)

# 第五步-傅里叶变换频谱和能量谱

# _raw_fft扫窗重叠,将348*200,扩展成348*512
NFFT = 512
mag_frames = numpy.absolute(numpy.fft.rfft(frames, NFFT)) # Magnitude of the FFT
pow_frames = ((1.0 / NFFT) * ((mag_frames) ** 2)) # Power Spectrum

# plt.pcolormesh(mag_frames)
#
# plt.pcolormesh(pow_frames)

# 第六步,Filter Banks滤波器组
# 公式:m=2595*log10(1+f/700);f=700(10^(m/2595)−1)
nfilt = 40 #窗的数目
low_freq_mel = 0
high_freq_mel = (2595 * numpy.log10(1 + (sample_rate / 2) / 700)) # Convert Hz to Mel
mel_points = numpy.linspace(low_freq_mel, high_freq_mel, nfilt + 2) # Equally spaced in Mel scale
hz_points = (700 * (10**(mel_points / 2595) - 1)) # Convert Mel to Hz
bin = numpy.floor((NFFT + 1) * hz_points / sample_rate)

fbank = numpy.zeros((nfilt, int(numpy.floor(NFFT / 2 + 1))))
for m in range(1, nfilt + 1):
 f_m_minus = int(bin[m - 1]) # left
 f_m = int(bin[m])    # center
 f_m_plus = int(bin[m + 1]) # right

 for k in range(f_m_minus, f_m):
  fbank[m - 1, k] = (k - bin[m - 1]) / (bin[m] - bin[m - 1])
 for k in range(f_m, f_m_plus):
  fbank[m - 1, k] = (bin[m + 1] - k) / (bin[m + 1] - bin[m])
filter_banks = numpy.dot(pow_frames, fbank.T)
filter_banks = numpy.where(filter_banks == 0, numpy.finfo(float).eps, filter_banks) # Numerical Stability
filter_banks = 20 * numpy.log10(filter_banks) # dB;348*26

# plt.subplot(111)
# plt.pcolormesh(filter_banks.T)
# plt.grid('on')
# plt.ylabel('Frequency [Hz]')
# plt.xlabel('Time [sec]')
# plt.show()

#
# 第七步,梅尔频谱倒谱系数-MFCCs
num_ceps = 12 #取12个系数
cep_lifter=22 #倒谱的升个数??
mfcc = dct(filter_banks, type=2, axis=1, norm='ortho')[:, 1 : (num_ceps + 1)] # Keep 2-13
(nframes, ncoeff) = mfcc.shape
n = numpy.arange(ncoeff)
lift = 1 + (cep_lifter / 2) * numpy.sin(numpy.pi * n / cep_lifter)
mfcc *= lift #*

# plt.pcolormesh(mfcc.T)
# plt.ylabel('Frequency [Hz]')
# plt.xlabel('Time [sec]')

# 第八步,均值化优化
# to balance the spectrum and improve the Signal-to-Noise (SNR), we can simply subtract the mean of each coefficient from all frames.

filter_banks -= (numpy.mean(filter_banks, axis=0) + 1e-8)
mfcc -= (numpy.mean(mfcc, axis=0) + 1e-8)

# plt.subplot(111)
# plt.pcolormesh(mfcc.T)
# plt.ylabel('Frequency [Hz]')
# plt.xlabel('Time [sec]')
# plt.show()

# 直接频谱分析
# plot the wave
# plt.specgram(signal,Fs = sample_rate, scale_by_freq = True, sides = 'default')
# plt.ylabel('Frequency(Hz)')
# plt.xlabel('Time(s)')
# plt.show()

plt.figure(figsize=(10, 4))
mfccs = librosa.feature.melspectrogram(signal,sr=8000,n_fft=512,n_mels=40)
librosa.display.specshow(mfccs, x_axis='time')
plt.colorbar()
plt.title('MFCC')
plt.tight_layout()
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 对Python使用mfcc的两种方式详解

    1.Librosa import librosa filepath = "/Users/birenjianmo/Desktop/learn/librosa/mp3/in.wav" y,sr = librosa.load(filepath) mfcc = librosa.feature.mfcc( y,sr,n_mfcc=13 ) 返回结构为(13,None)的np.Array,None表示任意数量 2.python_speech_features from python_speech_

  • 梅尔频率倒谱系数(mfcc)及Python实现

    语音识别系统的第一步是进行特征提取,mfcc是描述短时功率谱包络的一种特征,在语音识别系统中被广泛应用. 一.mel滤波器 每一段语音信号被分为多帧,每帧信号都对应一个频谱(通过FFT变换实现),频谱表示频率与信号能量之间的关系.mel滤波器是指多个带通滤波器,在mel频率中带通滤波器的通带是等宽的,但在赫兹(Hertz)频谱内mel滤波器在低频处较密集切通带较窄,高频处较稀疏且通带较宽,旨在通过在较低频率处更具辨别性并且在较高频率处较少辨别性来模拟非线性人类耳朵对声音的感知. 赫兹频率和梅尔频

  • 梅尔倒谱系数(MFCC)实现

    本文实例为大家分享了梅尔倒谱系数实现代码,供大家参考,具体内容如下 """ @author: zoutai @file: mymfcc.py @time: 2018/03/26 @description: """ from matplotlib.colors import BoundaryNorm import librosa import librosa.display import numpy import scipy.io.wavfile

  • 基于MATLAB和Python实现MFCC特征参数提取

    1.MFCC概述 在语音识别(Speech Recognition)和话者识别(Speaker Recognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scale FrequencyCepstral Coefficients,简称MFCC).根据人耳听觉机理的研究发现,人耳对不同频率的声波有不同的听觉敏感度.从200Hz到5000Hz的语音信号对语音的清晰度影响较大.两个响度不等的声音作用于人耳时,则响度较高的频率成分的存在会影响到对响度较低的频率成分的感受,使其变得不易察觉,

  • Python实现语音识别和语音合成功能

    声音的本质是震动,震动的本质是位移关于时间的函数,波形文件(.wav)中记录了不同采样时刻的位移. 通过傅里叶变换,可以将时间域的声音函数分解为一系列不同频率的正弦函数的叠加,通过频率谱线的特殊分布,建立音频内容和文本的对应关系,以此作为模型训练的基础. 案例:画出语音信号的波形和频率分布,(freq.wav数据地址) # -*- encoding:utf-8 -*- import numpy as np import numpy.fft as nf import scipy.io.wavfil

  • 基础语音识别-食物语音识别baseline(CNN)

    MFCC 梅尔倒谱系数(Mel-scaleFrequency Cepstral Coefficients,简称MFCC). MFCC通常有以下之过程: 将一段语音信号分解为多个讯框. 将语音信号预强化,通过一个高通滤波器. 进行傅立叶变换,将信号变换至频域. 将每个讯框获得的频谱通过梅尔滤波器(三角重叠窗口),得到梅尔刻度. 在每个梅尔刻度上提取对数能量. 对上面获得的结果进行离散傅里叶反变换,变换到倒频谱域. MFCC就是这个倒频谱图的幅度(amplitudes).一般使用12个系数,与讯框能

  • Python提取频域特征知识点浅析

    在多数的现代语音识别系统中,人们都会用到频域特征.梅尔频率倒谱系数(MFCC),首先计算信号的功率谱,然后用滤波器和离散余弦变换的变换来提取特征.本文重点介绍如何提取MFCC特征. 首先创建有一个Python文件,并导入库文件:     from scipy.io import wavfile     from python_speech_features import mfcc, logfbank     import matplotlib.pylab as plt1.首先创建有一个Pytho

  • 基于Pytorch实现的声音分类实例代码

    目录 前言 环境准备 安装libsora 安装PyAudio 安装pydub 训练分类模型 生成数据列表 训练 预测 其他 总结 前言 本章我们来介绍如何使用Pytorch训练一个区分不同音频的分类模型,例如你有这样一个需求,需要根据不同的鸟叫声识别是什么种类的鸟,这时你就可以使用这个方法来实现你的需求了. 源码地址:https://github.com/yeyupiaoling/AudioClassification-Pytorch 环境准备 主要介绍libsora,PyAudio,pydub

  • 对python中Librosa的mfcc步骤详解

    1.对语音数据归一化 如16000hz的数据,会将每个点/32768 2.计算窗函数:(*注意librosa中不进行预处理) 3.进行数据扩展填充,他进行的是镜像填充("reflect") 如原数据为 12345 -> 填充为4的,左右各填充4 即:5432123454321 即:5432-12345-4321 4.分帧 5.加窗:对每一帧进行加窗, 6.进行fft傅里叶变换 librosa中fft计算,可以使用.net中的System.Numerics MathNet.Nume

  • JAVA实现基于皮尔逊相关系数的相似度详解

    最近在看<集体智慧编程>,相比其他机器学习的书籍,这本书有许多案例,更贴近实际,而且也很适合我们这种准备学习machinelearning的小白. 这本书我觉得不足之处在于,里面没有对算法的公式作讲解,而是直接用代码去实现,所以给想具体了解该算法带来了不便,所以想写几篇文章来做具体的说明.以下是第一篇,对皮尔逊相关系数作讲解,并采用了自己比较熟悉的java语言做实现. 皮尔逊数学公式如下,来自维基百科. 其中,E是数学期望,cov表示协方差,\sigma_X和\sigma_Y是标准差. 化简后

  • 定义hashcode时使用31系数的原因

    散列计算就是计算元素应该放在数组的哪个元素里.准确的说是放到哪个链表里面.按照Java的规则,如果你要想将一个对象放入HashMap中,你的对象的类必须提供hashcode方法,返回一个整数值.比如String类就有如下方法: public int hashCode() { int h = hash; int len = count; if (h == 0 && len > 0) { int off = offset; char val[] = value; for (int i =

随机推荐