python实现图片处理和特征提取详解

这是一张灵异事件图。。。开个玩笑,这就是一张普通的图片。

毫无疑问,上面的那副图画看起来像一幅电脑背景图片。这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球。然而,我们生活在数字图片的年代,我们也很少去想这些图片是在怎么存储在存储器上的或者去想这些图片是如何通过各种变化生成的。

在这篇文章中,我将带着你了解一些基本的图片特征处理。data massaging 依然是一样的:特征提取,但是这里我们还需要对跟多的密集数据进行处理,但同时数据清理是在数据库、表、文本等中进行。这是如何对图片进行处理的呢?我们将看到图片是怎么存储在硬盘中的,同时我们可以通过使用基本的操作来处理图片。
导入图片

在python中导入图片是非常容易的。下面的代码就是python如何导入代码的:

代码解释:

这幅图片有一些颜色和许多像素组成,为了形象这幅图片是如何存储的,把每一个像素想象成矩阵中的每一个元素。现在这些元素包含三个不同的密度信息,分别为颜色红、绿、蓝(RGB)。所以一个RGB的图片就变成了三维的矩阵。每一个数字就是颜色的密度(RGB)

让我们来看看一些转化:

就像你在上面看到的一样,我们对三个颜色维度进行了一些操作转变。黄色不是一种直接表示的颜色,它是红色和绿色的组合色。我们通过设置其他颜色密度值为零而得到了这些变化。

将图像转换为二维矩阵

处理图像的三维色有时可能是很复杂和冗余的。如果我们压缩图像为二维矩阵,在特征提取后,它将变得更简单。这是通过灰度图像或二值化(Binarizing)图像。当图片显示为不同灰色强度组合时灰度图像比二值化(Binarizing)图像颜色更加饱满,而二值化(binarzing)只是简单的构建一个充满0和1的二维矩阵而已。

这里将叫你如何将RGB图片转变成灰度图像:

就如你所见,图片的维度已经降为了两种灰度值了,然而图片的特征在两幅图片中依然清晰可见。这就是为什么灰色图像在硬盘上存贮更加节约空间。

现在让我们来二值化灰色图像,这是通过找到阀值和灰色度像素标志(flagging the pixels of Grayscale)。在这篇文章中我已经通过Otsu‘s方法来找到阀值的,Otsu‘s方法是通过最大化两类不同像素点之间的距离来计算最优阀值的,也就是说这个阀值最小化了同类间的变量值。

模糊化图片

本文最后部分我们将介绍更多有关特征提取的内容:图像模糊。灰度或二值图像有时需要捕获更多的图像而模糊图像在这样的场景下是非常方便的。例如,在这张图片如果铁路轨道比鞋子更加重要,模糊处理将会添加跟多的值。从这个例子中我们对模糊处理变得更清晰。模糊算法需要将邻近像素的加权平均值加到周围每个颜色像素中。下面是一个模糊处理的例子:

对上面的照片模糊处理后,我们清楚地看到鞋已经与铁路轨道具有相同的密度等级。因此,在许多场景中这种技术非常方便。
让我们看一个实际例子。我们想在一个小镇的照片上统计的人数。但是照片上还有一些建筑图像。现在建筑背后的人的颜色强度会低于建筑本身。因此,这些人我们就难以计数。模糊处理场景后才能平衡建筑和人在图像中的颜色强度。

完整的代码:

image = imread(r"C:\Users\Tavish\Desktop\7.jpg")
show_img(image)

red, yellow = image.copy(), image.copy()
red[:,:,(1,2)] = 0
yellow[:,:,2]=0
show_images(images=[red,yellow], titles=['Red Intensity','Yellow Intensity'])

from skimage.color import rgb2gray
gray_image = rgb2gray(image)
show_images(images=[image,gray_image],titles=["Color","Grayscale"])
print "Colored image shape:", image.shape
print "Grayscale image shape:", gray_image.shape

from skimage.filter import threshold_otsu
thresh = threshold_otsu(gray_image)
binary = gray_image > thresh
show_images(images=[gray_image,binary_image,binary],titles=["Grayscale","Otsu Binary"])

from skimage.filter import gaussian_filter
blurred_image = gaussian_filter(gray_image,sigma=20)
show_images(images=[gray_image,blurred_image],titles=["Gray Image","20 Sigma Blur"])

总结

以上就是本文关于python实现图片处理和特征提取详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

python图像常规操作

在Python web中实现验证码图片代码分享

Python生成数字图片代码分享

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(0)

相关推荐

  • python图像处理之反色实现方法

    本文实例讲述了python图像处理之反色实现方法.分享给大家供大家参考.具体如下: 我们先加载一个8位灰度图像 每一个像素对应的灰度值从0-255 则只需要读取每个像素的灰度值A,再将255-A写入 这样操作一遍后,图像就会反色了 这里运行环境为: Python为:Python2.7.6 OpenCV2.4.10版(可到http://sourceforge.net/projects/opencvlibrary/files/opencv-win/下载) numpy为:numpy-1.9.1-win

  • python图像处理之镜像实现方法

    本文实例讲述了python图像处理之镜像实现方法.分享给大家供大家参考.具体分析如下: 图像的镜像变化不改变图像的形状.图像的镜像变换分为三种:水平镜像.垂直镜像.对角镜像 设图像的大小为M×N,则 水平镜像可按公式 I = i J = N - j + 1 垂直镜像可按公式 I = M - i + 1 J = j 对角镜像可按公式 I = M - i + 1 J = N - j + 1 值得注意的是在OpenCV中坐标是从[0,0]开始的 所以,式中的 +1 在编程时需要改为 -1 这里运行环境

  • python实现图片处理和特征提取详解

    这是一张灵异事件图...开个玩笑,这就是一张普通的图片. 毫无疑问,上面的那副图画看起来像一幅电脑背景图片.这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球.然而,我们生活在数字图片的年代,我们也很少去想这些图片是在怎么存储在存储器上的或者去想这些图片是如何通过各种变化生成的. 在这篇文章中,我将带着你了解一些基本的图片特征处理.data massaging 依然是一样的:特征提取,但是这里我们还需要对跟多的密集数据进行处理,但同时数据清理是在数据库.表.文本等中进行.这是如何

  • Python实现图片压缩的案例详解

    目录 1.引言 2.PIL模块 2.1 quality 方式 2.2 thumbnail方式 3.OpenCV模块 3.1 安装 3.2 执行代码 4.总结 1.引言 小屌丝:鱼哥,求助,求助 小鱼:啥情况,这火急火燎的? 小屌丝: 我要在某站进行认证,上传图片时提示,图片超过本站最大xxx限制. 小鱼:就这?? 小屌丝:对啊,我又不想换照片,又不像照片失真. 小鱼:就这要求? 小屌丝:对,能赶紧帮我不处理不? 小鱼:嗯~ 理论上是可以. 小屌丝:什么都别说,我懂,枸杞一袋! 小鱼:懂我,五分钟

  • python为图片和PDF去水印详解

    目录 安装模块 获取图片的 RGB 图片去水印 PDF 去水印 图片转为 pdf 总结 网上下载的 pdf 学习资料有一些会带有水印,非常影响阅读.比如下面的图片就是在 pdf 文件上截取出来的. 安装模块 PIL:Python Imaging Library 是 python 上非常强大的图像处理标准库,但是只能支持 python 2.7,于是就有志愿者在 PIL 的基础上创建了支持 python 3的 pillow,并加入了一些新的特性. pip install pillow pymupdf

  • Python去除图片水印实现方法详解

    目录 OpenCV介绍 去水印 图片去水印原理 最近写文章遇到图片有水印,如何去除水印呢? 网上找了各种办法,也跑到小红书.抖音等平台找有没有不收费就去水印的网站,但是基本上都是需要VIP会员才可以. 话又说回来这种事情怎么能难倒一个程序员呢?Python的库有这么多肯定有一款适合我吧? 于是找来了OpenCV. OpenCV介绍 文档链接:https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html Opencv(Ope

  • 通过python改变图片特定区域的颜色详解

    首先让我祭出一张数学王子高斯的照片,这位印在德国马克上的神人有多牛呢? 他是近代数学的奠基人之一,与牛顿, 阿基米德并称顶级三大数学家,随便找一个编程语言的数学库,里面一定有和他名字相关的一堆函数. 开始正文之前,让我们再来膜拜一下19岁的高斯如何用一把圆规和没有刻度的尺子画出正十七边形. 下面我就拿高斯这张肖像画作为示例如何用Python将他帽子的颜色换了. 计算机分析图片不可能像人类的肉眼一样进行观察,再用右脑进行思考,它能识别的只有数字,下面我们从计算机的角度来对图片做一个简单的认知. 机

  • 手机使用python操作图片文件(pydroid3)过程详解

    起因 前几天去国图拍了一本书,一本心理学方面的书,也许你问我为什么不去买一本,或者去网上找pdf. 其实吧,关于心理学方面的书可以说在市面上一抓就是一堆,至于拍这本书两个原因,一个是没有什么收藏价值不值得我去买,只适合应急用,然后就是这本书的作者写作特点和其他大众的不太一样,可以说是有特点或者偏门,于是我就在手机上拍了一堆的图片,后来整理成了pdf,但是昨天我看的时候原图片文件还在快上千了吧,一个一个选择删除真是删烦了,也许你会说为什么不导入到电脑上进行删除,没办法我就是想整点不一样的,学了py

  • Python编程实现蚁群算法详解

    简介 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法.它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为.蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值. 定义 各个蚂蚁在没有事先告诉

  • Python 图片处理库exifread详解

    [导语]:用 python 怎样获得图片的GPS信息?今天推荐一下 exifread 这个神奇的库,不仅仅是 GPS 信息,几乎能能获得图片的所有信息,快进来看看!! 要怎样获得拍摄图片的GPS呢?这里我们需要exifread 库,这个就是用来提取 GPS 信息的.直接 pip install exifread 来安装就好了. 其实不仅能获得GPS信息,图片的几乎所有信息都能获得.exifread的作用其实是代替了查看图片属性!如下图: 这里用在三亚拍的骆驼照片来做个演示,看看能不能定位到三亚.

  • Python实现为图片添加水印的示例详解

    目录 1.引言 2.filestools介绍 2.1 安装 2.2 filestools 功能介绍 2.3 watermarker模块介绍 2.4 代码实例 补充 1.引言 小屌丝:鱼哥,这个周末过得咋样 小鱼:酸爽~ ~ 小屌丝:额~~ 我能想到的,是这样吗? 小鱼:有多远你走多远. 小屌丝:唉,鱼哥,你别说,我觉得这个图片,跟你平时的表情挺贴切的. 小鱼:你想咋的!!!! 小屌丝:突然想到,能不能给你来一个专属的图片,例如追加水印啥的,让别人无图可盗!! 小鱼:嘿~ 你别说,还真的可以哈,

  • Python OpenCV实现图片预处理的方法详解

    目录 一.图片预处理 1.1 边界填充(padding) 1.2 融合图片(mixup) 1.3 图像阈值 二.滤波器 2.1 均值滤波器 2.2 方框滤波器 2.3 高斯滤波器 2.4 中值滤波 2.5 所有滤波器按照上述顺序输出 一.图片预处理 1.1 边界填充(padding) 方法 : cv2.copyMakeBorder BORDER_REPLICATE:复制法,也就是复制最边缘像素. BORDER_REFLECT:反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcba|abc

随机推荐