Python算法应用实战之栈详解

栈(stack)

栈又称之为堆栈是一个特殊的有序表,其插入和删除操作都在栈顶进行操作,并且按照先进后出,后进先出的规则进行运作。

如下图所示

例如枪的弹匣,第一颗放进弹匣的子弹反而在发射出去的时候是最后一个,而最后放入弹匣的一颗子弹在打出去的时候是第一颗发射出去的。

栈的接口

如果你创建了一个栈,那么那么应该具有以下接口来进行对栈的操作

接口 描述
push() 入栈
pop() 出栈
isEmpty() 判断是否为空栈
length() 获取栈的长度
getTop() 取栈顶的元素,元素不出栈

知道栈需要上述的接口后,那么在Python中,列表就类似是一个栈,提供接口如下:

操作 描述
s = [] 创建一个栈
s.append(x) 往栈内添加一个元素
s.pop() 在栈内删除一个元素
not s 判断是否为空栈
len(s) 获取栈内元素的数量
s[-1] 获取栈顶的元素

Python中的栈接口使用实例:

# 创建一个栈
In [1]: s = []
# 往栈内添加一个元素
In [2]: s.append(1)
In [3]: s
Out[3]: [1]
# 删除栈内的一个元素
In [4]: s.pop()
Out[4]: 1
In [5]: s
Out[5]: []
# 判断栈是否为空
In [6]: not s
Out[6]: True
In [7]: s.append(1)
In [8]: not s
Out[8]: False
# 获取栈内元素的数量
In [9]: len(s)
Out[9]: 1
In [10]: s.append(2)
In [11]: s.append(3)
# 取栈顶的元素
In [12]: s[-1]
Out[12]: 3

一大波实例

在了解栈的基本概念之后,让我们再来看几个实例,以便于理解栈。

括号匹配

题目

假如表达式中允许包含三中括号()、[]、{},其嵌套顺序是任意的,例如:

正确的格式

{()[()]},[{({})}]

错误的格式

[(]),[()),(()}

编写一个函数,判断一个表达式字符串,括号匹配是否正确

思路

  1. 创建一个空栈,用来存储尚未找到的左括号;
  2. 便利字符串,遇到左括号则压栈,遇到右括号则出栈一个左括号进行匹配;
  3. 在第二步骤过程中,如果空栈情况下遇到右括号,说明缺少左括号,不匹配;
  4. 在第二步骤遍历结束时,栈不为空,说明缺少右括号,不匹配;

解决代码

建议在pycharm中打断点,以便于更好的理解

#!/use/bin/env python
# _*_ coding:utf-8 _*_
LEFT = {'(', '[', '{'} # 左括号
RIGHT = {')', ']', '}'} # 右括号
def match(expr):
 """
 :param expr: 传过来的字符串
 :return: 返回是否是正确的
 """
 stack = [] # 创建一个栈
 for brackets in expr: # 迭代传过来的所有字符串
 if brackets in LEFT: # 如果当前字符在左括号内
  stack.append(brackets) # 把当前左括号入栈
 elif brackets in RIGHT: # 如果是右括号
  if not stack or not 1 <= ord(brackets) - ord(stack[-1]) <= 2:
  # 如果当前栈为空,()]
  # 如果右括号减去左括号的值不是小于等于2大于等于1
  return False # 返回False
  stack.pop() # 删除左括号
 return not stack # 如果栈内没有值则返回True,否则返回False
result = match('[(){()}]')
print(result)

迷宫问题

题目

用一个二维数组表示一个简单的迷宫,用0表示通路,用1表示阻断,老鼠在每个点上可以移动相邻的东南西北四个点,设计一个算法,模拟老鼠走迷宫,找到从入口到出口的一条路径。

如图所示

出去的正确线路如图中的红线所示

思路

  1. 用一个栈来记录老鼠从入口到出口的路径
  2. 走到某点后,将该点左边压栈,并把该点值置为1,表示走过了;
  3. 从临近的四个点中可到达的点中任意选取一个,走到该点;
  4. 如果在到达某点后临近的4个点都不走,说明已经走入死胡同,此时退栈,退回一步尝试其他点;
  5. 反复执行第二、三、四步骤直到找到出口;

解决代码

#!/use/bin/env python
# _*_ coding:utf-8 _*_
def initMaze():
 """
 :return: 初始化迷宫
 """
 maze = [[0] * 7 for _ in range(5 + 2)] # 用列表解析创建一个7*7的二维数组,为了确保迷宫四周都是墙
 walls = [ # 记录了墙的位置
 (1, 3),
 (2, 1), (2, 5),
 (3, 3), (3, 4),
 (4, 2), # (4, 3), # 如果把(4, 3)点也设置为墙,那么整个迷宫是走不出去的,所以会返回一个空列表
 (5, 4)
 ]
 for i in range(7): # 把迷宫的四周设置成墙
 maze[i][0] = maze[i][-1] = 1
 maze[0][i] = maze[-1][i] = 1
 for i, j in walls: # 把所有墙的点设置为1
 maze[i][j] = 1
 return maze
"""
[1, 1, 1, 1, 1, 1, 1]
[1, 0, 0, 1, 0, 0, 1]
[1, 1, 0, 0, 0, 1, 1]
[1, 0, 0, 1, 1, 0, 1]
[1, 0, 1, 0, 0, 0, 1]
[1, 0, 0, 0, 1, 0, 1]
[1, 1, 1, 1, 1, 1, 1]
"""
def path(maze, start, end):
 """
 :param maze: 迷宫
 :param start: 起始点
 :param end: 结束点
 :return: 行走的每个点
 """
 i, j = start # 分解起始点的坐标
 ei, ej = end # 分解结束点的左边
 stack = [(i, j)] # 创建一个栈,并让老鼠站到起始点的位置
 maze[i][j] = 1 # 走过的路置为1
 while stack: # 栈不为空的时候继续走,否则退出
 i, j = stack[-1] # 获取当前老鼠所站的位置点
 if (i, j) == (ei, ej): break # 如果老鼠找到了出口
 for di, dj in [(0, -1), (0, 1), (-1, 0), (1, 0)]: # 左右上下
  if maze[i + di][j + dj] == 0: # 如果当前点可走
  maze[i + di][j + dj] = 1 # 把当前点置为1
  stack.append((i + di, j + dj)) # 把当前的位置添加到栈里面
  break
 else: # 如果所有的点都不可走
  stack.pop() # 退回上一步
 return stack # 如果迷宫不能走则返回空栈
Maze = initMaze() # 初始化迷宫
result = path(maze=Maze, start=(1, 1), end=(5, 5)) # 老鼠开始走迷宫
print(result)
# [(1, 1), (1, 2), (2, 2), (3, 2), (3, 1), (4, 1), (5, 1), (5, 2), (5, 3), (4, 3), (4, 4), (4, 5), (5, 5)]

后缀表达式求值

题目

计算一个表达式时,编译器通常使用后缀表达式,这种表达式不需要括号:

中缀表达式 后缀表达式
2 + 3 * 4 2 3 4 * +
( 1 + 2 ) * ( 6 / 3 ) + 2 1 2 + 6 3 / * 2 +
18 / ( 3 * ( 1 + 2 ) ) 18 3 1 2 + * /

编写程序实现后缀表达式求值函数。

思路

  1. 建立一个栈来存储待计算的操作数;
  2. 遍历字符串,遇到操作数则压入栈中,遇到操作符号则出栈操作数(n次),进行相应的计算,计算结果是新的操作数压回栈中,等待计算
  3. 按上述过程,遍历完整个表达式,栈中只剩下最终结果;

解决代码

#!/use/bin/env python
# _*_ coding:utf-8 _*_
operators = { # 运算符操作表
 '+': lambda op1, op2: op1 + op2,
 '-': lambda op1, op2: op1 - op2,
 '*': lambda op1, op2: op1 * op2,
 '/': lambda op1, op2: op1 / op2,
}
def evalPostfix(e):
 """
 :param e: 后缀表达式
 :return: 正常情况下栈内的第一个元素就是计算好之后的值
 """
 tokens = e.split() # 把传过来的后缀表达式切分成列表
 stack = []
 for token in tokens: # 迭代列表中的元素
 if token.isdigit(): # 如果当前元素是数字
  stack.append(int(token)) # 就追加到栈里边
 elif token in operators.keys(): # 如果当前元素是操作符
  f = operators[token] # 获取运算符操作表中对应的lambda表达式
  op2 = stack.pop() # 根据先进后出的原则,先让第二个元素出栈
  op1 = stack.pop() # 在让第一个元素出栈
  stack.append(f(op1, op2)) # 把计算的结果在放入到栈内
 return stack.pop() # 返回栈内的第一个元素
result = evalPostfix('2 3 4 * +')
print(result)
# 14

背包问题

题目

有一个背包能装10kg的物品,现在有6件物品分别为:

物品名称 重量
物品0 1kg
物品1 8kg
物品2 4kg
物品3 3kg
物品4 5kg
物品5 2kg

编写找出所有能将背包装满的解,如物品1+物品5。

解决代码

#!/use/bin/env python
# _*_ coding:utf-8 _*_
def knapsack(t, w):
 """
 :param t: 背包总容量
 :param w: 物品重量列表
 :return:
 """
 n = len(w) # 可选的物品数量
 stack = [] # 创建一个栈
 k = 0 # 当前所选择的物品游标
 while stack or k < n: # 栈不为空或者k<n
 while t > 0 and k < n: # 还有剩余空间并且有物品可装
  if t >= w[k]: # 剩余空间大于等于当前物品重量
  stack.append(k) # 把物品装备背包
  t -= w[k] # 背包空间减少
  k += 1 # 继续向后找
 if t == 0: # 找到了解
  print(stack)
 # 回退过程
 k = stack.pop() # 把最后一个物品拿出来
 t += w[k] # 背包总容量加上w[k]
 k += 1 # 装入下一个物品
knapsack(10, [1, 8, 4, 3, 5, 2])
"""
[0, 2, 3, 5]
[0, 2, 4]
[1, 5]
[3, 4, 5]
"""

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。

(0)

相关推荐

  • Python算法之栈(stack)的实现

    本文以实例形式展示了Python算法中栈(stack)的实现,对于学习数据结构域算法有一定的参考借鉴价值.具体内容如下: 1.栈stack通常的操作: Stack() 建立一个空的栈对象 push() 把一个元素添加到栈的最顶层 pop() 删除栈最顶层的元素,并返回这个元素 peek()  返回最顶层的元素,并不删除它 isEmpty()  判断栈是否为空 size()  返回栈中元素的个数 2.简单案例以及操作结果: Stack Operation Stack Contents Return

  • 如何用C语言、Python实现栈及典型应用

    前言 栈是什么,你可以理解为一种先入后出的数据结构(First In Last Out),一种操作受限的线性表... C实现 借助与C语言中的void指针及函数指针,我们可以实现一个链式通用栈: /* stack.h */ #ifndef _STACK_H_ #define _STACK_H_ typedef struct stackNode { void *value; struct stackNode *next; } stackNode; typedef struct stack { st

  • Python记录详细调用堆栈日志的方法

    本文实例讲述了Python记录详细调用堆栈日志的方法.分享给大家供大家参考.具体实现方法如下: import sys import os def detailtrace(info): retStr = "" curindex=0 f = sys._getframe() f = f.f_back # first frame is detailtrace, ignore it while hasattr(f, "f_code"): co = f.f_code retSt

  • Python栈类实例分析

    本文实例讲述了python栈类.分享给大家供大家参考.具体如下: class Path: #a list used like a stack def __init__(self): self.P = [] def push(self,t): self.P.append(t) def pop(self): return self.P.pop() def top(self): return self.P[-1] def remove(self): self.P.pop(0) def isEmpty(

  • Python 数据结构之堆栈实例代码

    Python 堆栈 堆栈是一个后进先出(LIFO)的数据结构. 堆栈这个数据结构可以用于处理大部分具有后进先出的特性的程序流 . 在堆栈中, push 和 pop 是常用术语: push: 意思是把一个对象入栈. pop: 意思是把一个对象出栈. 下面是一个由 Python 实现的简单的堆栈结构: stack = [] # 初始化一个列表数据类型对象, 作为一个栈 def pushit(): # 定义一个入栈方法 stack.append(raw_input('Enter New String:

  • Python栈算法的实现与简单应用示例

    本文实例讲述了Python栈算法的实现与简单应用.分享给大家供大家参考,具体如下: 原理: 栈作为一种数据结构,是一种只能在一端进行插入和删除操作.它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来) 桟的应用场景非常多:1.内存管理中使用的堆栈:2.基于桟实现的二叉树的遍历:3.在语言处理中,符号的平衡问题,在语言中,往往很多符号是成对出现的,比如<>,{},[],()等,如何判断符号是否漏了,一种实现方式就

  • Python基于matplotlib绘制栈式直方图的方法示例

    本文实例讲述了Python基于matplotlib绘制栈式直方图的方法.分享给大家供大家参考,具体如下: 平时我们只对一组数据做直方图统计,这样我们只要直接画直方图就可以了. 但有时候我们同时画多组数据的直方图(比如说我大一到大四跑大学城内环的用时的分布),大一到大四用不同颜色的直方图,显示在一张图上,这样会很直观. #!/usr/bin/env python # -*- coding: utf-8 -*- #http://www.jb51.net/article/100363.htm # nu

  • Python实现包含min函数的栈

    本文实例讲述了Python实现包含min函数的栈.分享给大家供大家参考,具体如下: # coding=utf8 ''' 题目:定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的min函数. 在该栈中,调用min.push及pop的时间复杂度都是O(1). ''' class Stack(): def __init__(self): self.main_stack = [] # 辅助栈,每次次最小的元素压入辅助栈 self.assist_stack = [] # 记录栈中的最小元素 se

  • Python基于list的append和pop方法实现堆栈与队列功能示例

    本文实例讲述了Python基于list的append和pop方法实现堆栈与队列功能.分享给大家供大家参考,具体如下: #coding=utf8 ''''' 堆栈: 堆栈是一个后进先出(LIFO)的数据结构. 在栈上"push"元素是个常用术语,意思是把一个对象添加到堆栈中. 删除一个元素,可以把它"pop"出堆栈. 队列: 队列是一种先进先出(FIFO)的数据类型. 新的元素通过"入队"的方式添加进队列的末尾, "出对"就是从

  • 栈和队列数据结构的基本概念及其相关的Python实现

    先来回顾一下栈和队列的基本概念: 相同点:从"数据结构"的角度看,它们都是线性结构,即数据元素之间的关系相同. 不同点:栈(Stack)是限定只能在表的一端进行插入和删除操作的线性表. 队列(Queue)是限定只能在表的一端进行插入和在另一端进行删除操作的线性表.它们是完全不同的数据类型.除了它们各自的基本操作集不同外,主要区别是对插入和删除操作的"限定". 栈必须按"后进先出"的规则进行操作:比如说,小学老师批改学生的作业,如果不打乱作业本的顺

随机推荐