Python数据分析之如何利用pandas查询数据示例代码

前言

在数据分析领域,最热门的莫过于Python和R语言,本文将详细给大家介绍关于Python利用pandas查询数据的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。

示例代码

这里的查询数据相当于R语言里的subset功能,可以通过布尔索引有针对的选取原数据的子集、指定行、指定列等。我们先导入一个student数据集:

student = pd.io.parsers.read_csv('C:\\Users\\admin\\Desktop\\student.csv')

查询数据的前5行或末尾5行:

student.head()
student.tail()

查询指定的行:

student.ix[[0,2,4,5,7]] #这里的ix索引标签函数必须是中括号[]

查询指定的列:

student[['Name','Height','Weight']].head() #如果多个列的话,必须使用双重中括号

也可以通过ix索引标签查询指定的列:

student.ix[:,['Name','Height','Weight']].head()

查询指定的行和列:

student.ix[[0,2,4,5,7],['Name','Height','Weight']].head()

查询所有女生的信息:

student[student['Sex']=='F']

查询出所有12岁以上的女生信息:

student[(student['Sex']=='F') & (student['Age']>12)]

查询出所有12岁以上的女生姓名、身高和体重:

student[(student['Sex']=='F') & (student['Age']>12)][['Name','Height','Weight']]

上面的查询逻辑其实非常的简单,需要注意的是,如果是多个条件的查询,必须在&(且)或者|(或)的两端条件用括号括起来。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

(0)

相关推荐

  • Python数据分析之真实IP请求Pandas详解

    前言 pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 .Series 和 DataFrame 分别对应于一维的序列和二维的表结构.pandas 约定俗成的导入方法如下: from pandas import Series,DataFrame import pandas as pd 1.1. Pandas分析步骤 1.载入日志数据 2.载

  • 对Python进行数据分析_关于Package的安装问题

    一.为什么要使用Python进行数据分析? python拥有一个巨大的活跃的科学计算社区,拥有不断改良的库,能够轻松的集成C,C++,Fortran代码(Cython项目),可以同时用于研究和原型的构建以及生产系统的构建. 二.Python的优势与劣势: 1.Python是一种解释型语言,运行速度比编译型数据慢. 2.由于python有一个全局解释器锁(GIL),防止解释器同时执行多条python字节码,所以python不适用于高并发.多线程的应用程序. 三.使用Python进行数据分析常用的扩

  • 在MAC上搭建python数据分析开发环境

    最近工作转型到数据开发领域,想在本地搭建一个数据开发环境.自己有三年python开发经验,马上想到使用numpy.scipy.sklearn.pandas搭建一套数据开发环境. ubuntu的环境,百度中文章比较多,搭建起来非常顺利.MAC环境的资料比较少,百度出来的,已经不对了,那我就来补充一篇吧. MAC自带python,python的安装我就不多说了. 安装pip 我喜欢用pip安装python库,非常方便,pip的安装只能用源码了. #下载源代码 https://pypi.python.

  • 利用python实现数据分析

    1:文件内容格式为json的数据如何解析 import json,os,sys current_dir=os.path.abspath(".") filename=[file for file in os.listdir(current_dir) if ".txt" in file]#得到当前目录中,后缀为.txt的数据文件 fn=filename[0] if len(filename)==1 else "" #从list中取出第一个文件名 if

  • R vs. Python 数据分析中谁与争锋?

    当我们想要选择一种编程语言进行数据分析时,相信大多数人都会想到R和Python--但是从这两个非常强大.灵活的数据分析语言中二选一是非常困难的. 我承认我还没能从这两个数据科学家喜爱的语言中选出更好的那一个.因此,为了使事情变得有趣,本文将介绍一些关于这两种语言的详细信息,并将决策权留给读者.值得一提的是,有多种途径可以了解这两种语言各自的优缺点.然而在我看来,这两种语言之间其实有很强的关联. Stack Overflow趋势对比 上图显示了自从2008年(Stack Overflow 成立)以

  • Python运用于数据分析的简单教程

    最近,Analysis with Programming加入了Planet Python.作为该网站的首批特约博客,我这里来分享一下如何通过Python来开始数据分析.具体内容如下: 数据导入         导入本地的或者web端的CSV文件:     数据变换:     数据统计描述:     假设检验         单样本t检验:     可视化:     创建自定义函数. 数据导入 这是很关键的一步,为了后续的分析我们首先需要导入数据.通常来说,数据是CSV格式,就算不是,至少也可以转

  • Python数据分析之如何利用pandas查询数据示例代码

    前言 在数据分析领域,最热门的莫过于Python和R语言,本文将详细给大家介绍关于Python利用pandas查询数据的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 示例代码 这里的查询数据相当于R语言里的subset功能,可以通过布尔索引有针对的选取原数据的子集.指定行.指定列等.我们先导入一个student数据集: student = pd.io.parsers.read_csv('C:\\Users\\admin\\Desktop\\student.csv')

  • Python tkinter界面实现历史天气查询的示例代码

    一.实现效果 1. python代码 import requests from lxml import etree import re import tkinter as tk from PIL import Image, ImageTk from xpinyin import Pinyin def get_image(file_nam, width, height): im = Image.open(file_nam).resize((width, height)) return ImageT

  • Python数据分析之获取双色球历史信息的方法示例

    本文实例讲述了Python数据分析之获取双色球历史信息的方法.分享给大家供大家参考,具体如下: 每个人都有一颗中双色球大奖的心,对于技术人员来说,通过技术分析,可以增加中奖几率,现使用python语言收集历史双色球中奖信息,之后进行预测分析. 说明:采用2016年5月15日获取的双色球数据为基础进行分析,总抽奖数1940次. 初级代码,有些内容比较繁琐,有更好的代码,大家可以分享. #!/usr/bin/python # -*- coding:UTF-8 -*- #coding:utf-8 #a

  • 如何利用Pandas查询选取数据

    目录 一,Pandas查询数据的几种方法 二,Pandas使用df.loc查询数据的方法 df[] df.loc方法查询 df.iloc方法查询 总结 一,Pandas查询数据的几种方法 df[]按行列选取,这种情况一次只能选取行或者列 df.loc方法,根据行.列的标签值查询 df.iloc方法,根据行.列的数字位置查询,根据索引定位 df.query方法 二,Pandas使用df.loc查询数据的方法 使用单个label值查询数据 使用值列表批量查询 使用数值区间进行范围查询 使用条件表达式

  • python数据分析之将爬取的数据保存为csv格式

    目录 csv文件 python的csv模块 从csv文件读取内容 写入csv文件 运用实例 数据准备 将数据存为字典的形式 总结 csv文件 一种用逗号分割来实现存储表格数据的文本文件. python的csv模块 python遍历代码: arr = [12, 5, 33, 4, 1] #遍历输出1 for i in range(0, len(arr)): item = arr[i] print(item) #遍历输出2 for item in arr: print(item) #遍历输出3 st

  • Pandas查询数据df.query的使用

    目录 使用dataframe条件表达式查询 复杂条件查询 使用df.query可以简化查询 方法对比:使用df[(df[“a”] > 3) & (df[“b”]<5)]的方式:使用df.query(“a>3 & b<5”)的方式: df = pd.read_csv("beijing_tianqi_2018.csv") df.head()   ymd bWendu yWendu tianqi fengxiang fengli aqi aqiInfo

  • python Django中models进行模糊查询的示例

    多个字段模糊查询, 括号中的下划线是双下划线,双下划线前是字段名,双下划线后可以是icontains或contains,区别是是否大小写敏感,竖线是或的意思 #搜索功能 @csrf_exempt#使用@csrf_exempt装饰器,免除csrf验证 def search_testCaseApi(request): if request.method == 'POST': name = request.POST.get('task_name') updateUser=request.POST.ge

  • Python实现APP自动化发微信群消息的示例代码

    目录 1. 前言 2. 爬虫及服务 3. 自动化发送群聊 ​4. 最后 1. 前言 但是对于很多人来说,首先编写一款 App 需要一定的移动端开发经验,其次还需要另外编写无障碍服务应用,如此显得有一定难度的本篇文章将介绍另外一种方案,即:利用前面文章介绍的 AutoJS 来实现自动给微信群发送新闻早报 2. 爬虫及服务 为了演示方便,这里以百度热搜为新闻早报数据源, 使用 Requests + BeautifulSoup 按热度,爬取热度最高的 15 条数据 import requests fr

  • Python连接Mysql进行增删改查的示例代码

    Python连接Mysql 1.安装对应的库 使用Python连接Mysql数据库需要安装相应的库 以管理员身份运行cmd,输入命令 pip install mysql.connector 安装完成后建立 test.py 写入 import mysql.connector 保存后运行 python test.py 用以测试模块库是否安装完成,如果不报错,说明安装完成 2.进行连接测试 编写connectTest.py文件 文件内容: import mysql.connector connect

  • Python与Appium实现手机APP自动化测试的示例代码

    目录 1.什么是Appium 2.启动一个app自动化程序的步骤 3.appium服务介绍 4. appium客户端使用 5.adb的使用 6.Appium启动过程分析 1.什么是Appium appium是一个开源的测试自动化框架,可以与原生的.混合的和移动的web应用程序一直使用.它使用WebDriver协议驱动IOS(内置的测试引擎xcuitest).Android(uiautomator2,Espresso)和Windows应用程序 原生应用程序:安卓程序是用JAVA或kotlin开发出

随机推荐