详解MySQL单列索引和联合索引

目录
  • 一、简介
  • 二、单列索引
  • 三、最左前缀原则
  • 四、同时存在联合索引和单列索引(字段有重复)
  • 五、联合索引本质
  • 六、索引失效
  • 七、其它知识点
  • 八、MySQL存储引擎简介
  • 九、索引结构(方法、算法)

一、简介

利用索引中的附加列,可以缩小搜索的范围,但使用一个具有两列的索引不同于使用两个单独的索引。

联合索引的结构与电话簿类似,人名由姓和名构成,电话簿首先按姓氏进行排序,然后按名字对有相同姓氏的人进行排序。如果您知道姓,电话簿将非常有用,如果您知道姓和名,电话簿则更为有用,但如果您只知道名不知道姓,电话簿将没有用处。

所以说创建联合索引时,应该仔细考虑列的顺序。对索引中的所有列执行搜索或仅对前几列执行搜索时,联合索引非常有用;仅对后面的任意列执行搜索时,联合索引则没有用处。

二、单列索引

多个单列索引在多条件查询时优化器会优先选择最优索引策略,可能只用一个索引,也可能将多个索引全用上。但多个单列索引底层会创建多个B+索引树,比较占用空间,也会浪费一定搜索效率,故如果只有多条件联合查询时最好建联合索引。

三、最左前缀原则

顾名思义是最左优先,以最左边的为起点任何连续的索引都能匹配上,如果第一个字段是范围查询需要单独建一个索引,在创建联合索引时,要根据业务需求,where子句中使用最频繁的一列放在最左边。这样的话扩展性比较好,比如username经常需要作为查询条件,而age不常使用,则需要把username放在联合索引的第一位置,即最左边。

1、创建复合索引

ALTER TABLE employee ADD INDEX idx_name_salary (name,salary)

2、满足复合索引的最左特性,哪怕只是部分,复合索引生效

SELECT * FROM employee WHERE NAME='哪吒编程'

3、没有出现左边的字段,则不满足最左特性,索引失效

SELECT * FROM employee WHERE salary=5000

4、复合索引全使用,按左侧顺序出现 name,salary,索引生效

SELECT * FROM employee WHERE NAME='哪吒编程' AND salary=5000

5、虽然违背了最左特性,但MySQL执行SQL时会进行优化,底层进行颠倒优化

SELECT * FROM employee WHERE salary=5000 AND NAME='哪吒编程'

6、理由

复合索引也称为联合索引,当我们创建一个联合索引的时候,如(k1,k2,k3),相当于创建了(k1)、(k1,k2)和(k1,k2,k3)三个索引,这就是最左匹配原则。

联合索引不满足最左原则,索引一般会失效。

四、同时存在联合索引和单列索引(字段有重复)

这个时候查询mysql会怎么用索引呢?

这个涉及到MySQL本身的查询优化器策略,当一个表有多条索引可走时,mysql根据查询语句的成本来选择走哪条索引;

有人说where查询是按照从左到右的顺序,所以筛选力度大的条件尽量放在前面。网上百度过,确实有这种说法,但我亲自测试过,MySQL执行优化器会对其进行优化,当不考虑索引时,where条件顺序对效率没有影响,真正有影响的是是否用到了索引!

五、联合索引本质

当创建**(a, b, c)联合索引时,相当于创建了(a)单列索引,(a, b)联合索引以及(a, b, c)联合索引,想要索引生效的话,只能使用者三种组合;当然,我们上面测试过,a, c组合也可以,但实际上只用到了a的索引,c并没有用到。

六、索引失效

1、like子查询,%放前面;

2、非空判断 is not null;or语句前后没有同时使用索引。当or左右查询字段只有一个是索引,该索引失效,只有当or左右查询字段均为索引时,才会生效;

3、or语句(前后都有索引才行,SQL优化要避免写or语句);

4、数据类型出现隐式转化。如varchar不加单引号的话可能会自动转换为int型,使索引无效,产生全表扫描。

七、其它知识点

1、需要加索引的字段,要在where条件中

2、数据量少的字段不需要加索引,因为建索引有一定开销,如果数据量小则没有必要建索引,速度范围慢。

3、联合索引比每个列建索引更有优势,因为索引建立得越多就越占磁盘空间,在更新数据的时候速度会越慢、另外建立多列索引时,顺序也是需要注意的,应该讲严格的索引放在前面,这样筛选的力度会更大,效率更高。

八、MySQL存储引擎简介

1、InnoDB

支持事务处理,支持外键,支持崩溃修复能力和并发控制。如果需要对事务的完整性要求比较高(比如银行),要求实现并发控制(比如售票),那选择InnoDB有很大的优势。如果需要频繁的更新、删除操作的数据库,也可以选择InnoDB,因为支持事务的提交和回滚。

2、MyISAM

插入速度快,空间和内存使用比较低。如果表主要是用于插入新纪录和读取记录,那么选择MyISAM能实现处理高效率。如果应用的完整性、并发要求比较低,也可以使用。

注意,同一个数据库也可以使用多种存储引擎的表。如果一个表要求比较高的事务处理,可以选择InnoDB。这个数据库中可以将查询要求比较高的表选择MyISAM存储。如果该数据库需要一个用于查询的临时表,可以选择MEMORY存储引擎。

九、索引结构(方法、算法)

在mysql中常用两种索引结构(算法)BTree和Hash,两种算法检索方式不一样,对查询的作用也不一样。

1、Hash

Hash索引的底层实现是由Hash表来实现的,非常适合以 key-value 的形式查询,也就是单个key 查询,或者说是等值查询。

Hash 索引可以比较方便的提供等值查询的场景,由于是一次定位数据,不像BTree索引需 要从根节点到枝节点,最后才能访问到页节点这样多次IO访问,所以检索效率远高于BTree索引。但是对于范围查询的话,就需要进行全表扫描了。

但为什么我们使用BTree比使用Hash多呢?主要Hash本身由于其特殊性,也带来了很多限制和弊端:

  • Hash索引仅仅能满足“=”,“IN”,“<=>”查询,不能使用范围查询。
  • 联合索引中,Hash索引不能利用部分索引键查询。 对于联合索引中的多个列,Hash是要么全部使用,要么全部不使用,并不支持BTree支持的联合索引的最优前缀,也就是联合索引的前面一个或几个索引键进行查询时,Hash索引无法被利用。
  • Hash索引无法避免数据的排序操作 由于Hash索引中存放的是经过Hash计算之后的Hash值,而且Hash值的大小关系并不一定和Hash运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算。
  • Hash索引任何时候都不能避免表扫描 Hash索引是将索引键通过Hash运算之后,将Hash运算结果的Hash值和所对应的行指针信息存放于一个Hash表中,由于不同索引键存在相同Hash值,所以即使满足某个Hash键值的数据的记录条数,也无法从Hash索引中直接完成查询,还是要通过访问表中的实际数据进行比较,并得到相应的结果。
  • Hash索引遇到大量Hash值相等的情况后性能并不一定会比BTree高 对于选择性比较低的索引键,如果创建Hash索引,那么将会存在大量记录指针信息存于同一个Hash值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据访问,而造成整体性能底下。

2、B+ Tree

B+Tree索引是最常用的mysql数据库索引算法,因为它不仅可以被用在=,>,>=,<,<=和between这些比较操作符上,而且还可以用于like操作符,只要它的查询条件是一个不以通配符开头的常量,

例如:

select * from user where name like 'jack%'; select * from user where name like 'jac%k%';

如果一通配符开头,或者没有使用常量,则不会使用索引,

例如:

select * from user where name like '%jack'; select * from user where name like simply_name;

3、 B+/-Tree原理

在数据库中,数据量相对较大,多路查找树显然更加适合数据库的应用场景,接下来我们就介绍这两类多路查找树,毕竟作为程序员,心里没点B树怎么能行呢?

B树:B树就是B-树,他有着如下的特性:

  • B树不同于二叉树,他们的一个节点可以存储多个关键字和多个子树指针,这就是B+树的特点;
  • 一个m阶的B树要求除了根节点以外,所有的非叶子子节点必须要有[m/2,m]个子树;
  • 根节点必须只能有两个子树,当然,如果只有根节点一个节点的情况存在;
  • B树是一个查找二叉树,这点和二叉查找树很像,他都是越靠前的子树越小,并且,同一个节点内,关键字按照大小排序;
  • B树的一个节点要求子树的个数等于关键字的个数+1;

B+树就是B树的plus版

  • B+树将所有的查找结果放在叶子节点中,这也就意味着查找B+树,就必须到叶子节点才能返回结果;
  • B+树每一个节点的关键字个数和子树指针个数相同;
  • B+树的非叶子节点的每一个关键字对应一个指针,而关键字则是子树的最大,或者最小值;

将上一节中的B-Tree优化,由于B+Tree的非叶子节点只存储键值信息,假设每个磁盘块能存储4个键值及指针信息,则变成B+Tree后其结构如下图所示:

通常在B+Tree上有两个头指针,一个指向根节点,另一个指向关键字最小的叶子节点,而且所有叶子节点(即数据节点)之间是一种链式环结构。因此可以对B+Tree进行两种查找运算:一种是对于主键的范围查找和分页查找,另一种是从根节点开始,进行随机查找。

可能上面例子中只有22条数据记录,看不出B+Tree的优点,下面做一个推算:

InnoDB存储引擎中页的大小为16KB,一般表的主键类型为INT(占用4个字节)或BIGINT(占用8个字节),指针类型也一般为4或8个字节,也就是说一个页(B+Tree中的一个节点)中大概存储16KB/(8B+8B)=1K个键值(因为是估值,为方便计算,这里的K取值为〖10〗^3)。
也就是说一个深度为3的B+Tree索引可以维护10^3 * 10^3 * 10^3 = 10亿条记录。

实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree的高度一般都在2-4层。MySQL的InnoDB存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要1~3次磁盘I/O操作。

数据库中的B+Tree索引可以分为聚集索引(clustered index)和辅助索引(secondary index)。上面的B+Tree示例图在数据库中的实现即为聚集索引,聚集索引的B+Tree中的叶子节点存放的是整张表的行记录数据。辅助索引与聚集索引的区别在于辅助索引的叶子节点并不包含行记录的全部数据,而是存储相应行数据的聚集索引键,即主键。当通过辅助索引来查询数据时,InnoDB存储引擎会遍历辅助索引找到主键,然后再通过主键在聚集索引中找到完整的行记录数据。

到此这篇关于MySQL单列索引和联合索引的文章就介绍到这了,更多相关MySQL单列索引和联合索引内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • mysql 联合索引生效的条件及索引失效的条件

    目录 1.联合索引失效的条件 2.索引失效的条件 1.联合索引失效的条件 联合索引又叫复合索引.两个或更多个列上的索引被称作复合索引. 对于复合索引:Mysql从左到右的使用索引中的字段,一个查询可以只使用索引中的一部份,但只能是最左侧部分.例如索引是key index (a,b,c). 可以支持a | a,b| a,b,c 3种组合进行查找,但不支持 b,c进行查找 .当最左侧字段是常量引用时,索引就十分有效. 利用索引中的附加列,您可以缩小搜索的范围,但使用一个具有两列的索引不同于使用两个单

  • MySQL索引使用说明(单列索引和多列索引)

    1. 单列索引 在性能优化过程中,选择在哪些列上创建索引是最重要的步骤之一.可以考虑使用索引的主要有两种类型的列:在Where子句中出现的列,在join子句中出现的列.请看下面这个查询: Select age ## 不使用索引 FROM people Where firstname='Mike' ## 考虑使用索引 AND lastname='Sullivan' ## 考虑使用索引 这个查询与前面的查询略有不同,但仍属于简单查询.由于age是在Select部分被引用,MySQL不会用它来限制列选

  • 深入浅析Mysql联合索引最左匹配原则

    前言 之前在网上看到过很多关于mysql联合索引最左前缀匹配的文章,自以为就了解了其原理,最近面试时和面试官交流,发现遗漏了些东西,这里自己整理一下这方面的内容. 最左前缀匹配原则 在mysql建立联合索引时会遵循最左前缀匹配的原则,即最左优先,在检索数据时从联合索引的最左边开始匹配,示例: 对列col1.列col2和列col3建一个联合索引 KEY test_col1_col2_col3 on test(col1,col2,col3); 联合索引 test_col1_col2_col3 实际建

  • MySQL联合索引用法示例

    本文实例讲述了MySQL联合索引.分享给大家供大家参考,具体如下: 员工表 userid 部门表 deptid 员工部门表 条件:一个员工可以对应多个部门 问题:怎么样设置数据库,让其不能重复添加 userid 和deptid? uuid userid deptid 111 212 311(这个就不能让其添加) DROP TABLE IF EXISTS `dept`; CREATE TABLE `dept` ( `id` int(11) NOT NULL AUTO_INCREMENT, `dep

  • MySQL中的联合索引学习教程

    联合索引又叫复合索引.对于复合索引:Mysql从左到右的使用索引中的字段,一个查询可以只使用索引中的一部份,但只能是最左侧部分.例如索引是key index (a,b,c). 可以支持a | a,b| a,b,c 3种组合进行查找,但不支持 b,c进行查找 .当最左侧字段是常量引用时,索引就十分有效. 两个或更多个列上的索引被称作复合索引. 利用索引中的附加列,您可以缩小搜索的范围,但使用一个具有两列的索引 不同于使用两个单独的索引.复合索引的结构与电话簿类似,人名由姓和名构成,电话簿首先按姓氏

  • mysql联合索引的使用规则

    联合索引又叫复合索引.对于复合索引:Mysql从左到右的使用索引中的字段,一个查询可以只使用索引中的一部份,但只能是最左侧部分.例如索引是key index (a,b,c). 可以支持a | a,b| a,b,c 3种组合进行查找,但不支持 b,c进行查找 .当最左侧字段是常量引用时,索引就十分有效. 从一道有趣的题目开始分析: 假设某个表有一个联合索引(c1,c2,c3,c4)以下选项哪些字段使用了该索引: A where c1=x and c2=x and c4>x and c3=x B w

  • 详解MySQL单列索引和联合索引

    目录 一.简介 二.单列索引 三.最左前缀原则 四.同时存在联合索引和单列索引(字段有重复) 五.联合索引本质 六.索引失效 七.其它知识点 八.MySQL存储引擎简介 九.索引结构(方法.算法) 一.简介 利用索引中的附加列,可以缩小搜索的范围,但使用一个具有两列的索引不同于使用两个单独的索引. 联合索引的结构与电话簿类似,人名由姓和名构成,电话簿首先按姓氏进行排序,然后按名字对有相同姓氏的人进行排序.如果您知道姓,电话簿将非常有用,如果您知道姓和名,电话簿则更为有用,但如果您只知道名不知道姓

  • 详解mysql权限和索引

    mysql权限和索引 mysql的最高用户是root, 我们可以在数据库中创建用户,语句为CREATE USER 用户名 IDENTIFIED BY '密码',也可以执行CREATE USER 用户名 语句来创建用户,不过此用户没有密码,可以将用户登录后进行密码设置:删除用户语句为DROP USER 用户:更改用户名的语句为RENAME USER 老用户名 to 新用户名: 修改密码语句为set password=password('密码'): 高级用户修改别的用户密码的语句为SET PASSW

  • 详解mysql中的冗余和重复索引

    mysql允许在相同列上创建多个索引,无论是有意还是无意,mysql需要单独维护重复的索引,并且优化器在优化查询的时候也需要逐个地进行考虑,这会影响性能. 重复索引是指的在相同的列上按照相同的顺序创建的相同类型的索引,应该避免这样创建重复索引,发现以后也应该立即删除.但,在相同的列上创建不同类型的索引来满足不同的查询需求是可以的. CREATE TABLE test( ID INT NOT NULL PRIMARY KEY, A INT NOT NULL, B INT NOT NULL, UNI

  • 详解MySQL InnoDB的索引扩展

    索引扩展,InnoDB通过将主键列附加到每个辅助索引中来自动扩展该索引.创建如下表结构: mysql> CREATE TABLE t1 ( -> i1 INT NOT NULL DEFAULT 0, -> i2 INT NOT NULL DEFAULT 0, -> d DATE DEFAULT NULL, -> PRIMARY KEY (i1, i2), -> INDEX k_d (d) -> ) ENGINE = InnoDB; Query OK, 0 rows

  • 详解MySQL 8.0 之不可见索引

    言 MySQL 8.0 从第一版release 到现在已经走过了4个年头了,8.0版本在功能和代码上做了相当大的改进和重构.和DBA圈子里的朋友交流,大部分还是5.6 ,5.7的版本,少量的走的比较靠前采用了MySQL 8.0.为了紧追数据库发展的步伐,能够尽早享受技术红利,我们准备将MySQL 8.0引入到有赞的数据库体系. 落地之前 我们会对MySQL 8.0的新特性和功能,配置参数,升级方式,兼容性等等做一系列的学习和测试.以后陆陆续续会发布文章出来.本文算是MySQL 8.0新特性学习的

  • 详解MySQL的字段默认null对唯一索引的影响

    目录 正文 看一下为何唯一索引为影响insert速度 MySQL版本:在docker中启动一个mysql 假设只存在邮箱注册: insert数据 经验 正文 在日常业务开发中,会经常遇到需要保证唯一性的数据业务,如用户注册业务.一般注册业务中允许用户以手机号或email注册账号,且需要保证唯一,不允许重复注册.当用户输入手机号或email登录时,程序会判定输入信息的存在与否性,存在则走登录,不存在则走注册.而保证唯一性就不仅仅需要在程序端做判断,还需要MySQL的唯一索引去做最后一道防线.那么唯

  • 详解MyBatisPlus逻辑删除与唯一索引冲突问题

    1.问题背景: 在开发中,我们经常会有逻辑删除和唯一索引同时使用的情况.但当使用mybatis plus时,如果同时使用逻辑删除和唯一索引,会报数据重复Duplicate entry的问题. 举个例子: 原来数据库结构: 这里location_id是唯一索引 CREATE TABLE `eam_location` ( `id` int(11) NOT NULL AUTO_INCREMENT, `location_id` varchar(50) UNIQUE NOT NULL COMMENT '位

  • MySQL 独立索引和联合索引的选择

    通常会对多列索引缺乏理解,常见的错误是将很多列设置独立索引,或者是索引列使用错误的次序.我们在下一篇讨论索引列次序的问题,首先看一下多列独立索引的情况,以下面的表结构为例: CREATE TABLE test ( c1 INT, c2 INT, c3 INT, KEY(c1), KEY(c2), KEY(c3), ); 使用这种索引策略通常是一些权威的建议(例如在WHERE条件中用到的条件列增加索引)的结果.事实上,这是大错特错的,要评分的话顶多给1颗星.这种方式的索引与真正优化的索引相比,要慢

  • mysql聚集索引、辅助索引、覆盖索引、联合索引的使用

    目录 聚集索引(Clustered Index) 辅助索引(Secondary Index) 覆盖索引(Covering index) 联合索引 <MySQL技术内幕 InnoDB存储引擎>学习笔记 聚集索引(Clustered Index) 聚集索引就是按照每张表的主键构造一棵B+树,同时叶子节点中存放的即为整张表的行记录数据. 举个例子,直观感受下聚集索引. 创建表t,并以人为的方式让每个页只能存放两个行记录(不清楚怎么人为控制每页只存放两个行记录): 最后<MySQL技术内幕>

  • 详解MySQL中EXPLAIN解释命令及用法讲解

    1,情景描述:同事教我在mysql中用explain,于是查看了一番返回内容的含义 2,现就有用处的内容做如下记录: 1,explain显示了mysql如何使用索引来处理select语句以及连接表.可以帮助选择更好的索引和写出更优化的查询语句. 使用方法,在select语句前加上explain就可以了: explain select count(DISTINCT uc_userid) as user_login from user_char_daily_gameapp_11 where uc_d

随机推荐