Golang实现常见的限流算法的示例代码

目录
  • 固定窗口
  • 滑动窗口
  • 漏桶算法
  • 令牌桶
  • 滑动日志
  • 总结

限流是项目中经常需要使用到的一种工具,一般用于限制用户的请求的频率,也可以避免瞬间流量过大导致系统崩溃,或者稳定消息处理速率

这个文章主要是使用Go实现常见的限流算法,代码参考了文章面试官:来,年轻人!请手撸5种常见限流算法! 和面试必备:4种经典限流算法讲解如果需要Java实现或更详细的算法介绍可以看这两篇文章

固定窗口

每开启一个新的窗口,在窗口时间大小内,可以通过窗口请求上限个请求。

该算法主要是会存在临界问题,如果流量都集中在两个窗口的交界处,那么突发流量会是设置上限的两倍。

package limiter

import (
   "sync"
   "time"
)

// FixedWindowLimiter 固定窗口限流器
type FixedWindowLimiter struct {
   limit    int           // 窗口请求上限
   window   time.Duration // 窗口时间大小
   counter  int           // 计数器
   lastTime time.Time     // 上一次请求的时间
   mutex    sync.Mutex    // 避免并发问题
}

func NewFixedWindowLimiter(limit int, window time.Duration) *FixedWindowLimiter {
   return &FixedWindowLimiter{
      limit:    limit,
      window:   window,
      lastTime: time.Now(),
   }
}

func (l *FixedWindowLimiter) TryAcquire() bool {
   l.mutex.Lock()
   defer l.mutex.Unlock()
   // 获取当前时间
   now := time.Now()
   // 如果当前窗口失效,计数器清0,开启新的窗口
   if now.Sub(l.lastTime) > l.window {
      l.counter = 0
      l.lastTime = now
   }
   // 若到达窗口请求上限,请求失败
   if l.counter >= l.limit {
      return false
   }
   // 若没到窗口请求上限,计数器+1,请求成功
   l.counter++
   return true
}

滑动窗口

滑动窗口类似于固定窗口,它只是把大窗口切分成多个小窗口,每次向右移动一个小窗口,它可以避免两倍的突发流量。

固定窗口可以说是滑动窗口的一种特殊情况,只要滑动窗口里面的小窗口和大窗口大小一样。

窗口算法都有一个问题,当流量达到上限,后面的请求都会被拒绝。

package limiter

import (
   "errors"
   "sync"
   "time"
)

// SlidingWindowLimiter 滑动窗口限流器
type SlidingWindowLimiter struct {
   limit        int           // 窗口请求上限
   window       int64         // 窗口时间大小
   smallWindow  int64         // 小窗口时间大小
   smallWindows int64         // 小窗口数量
   counters     map[int64]int // 小窗口计数器
   mutex        sync.Mutex    // 避免并发问题
}

// NewSlidingWindowLimiter 创建滑动窗口限流器
func NewSlidingWindowLimiter(limit int, window, smallWindow time.Duration) (*SlidingWindowLimiter, error) {
   // 窗口时间必须能够被小窗口时间整除
   if window%smallWindow != 0 {
      return nil, errors.New("window cannot be split by integers")
   }

   return &SlidingWindowLimiter{
      limit:        limit,
      window:       int64(window),
      smallWindow:  int64(smallWindow),
      smallWindows: int64(window / smallWindow),
      counters:     make(map[int64]int),
   }, nil
}

func (l *SlidingWindowLimiter) TryAcquire() bool {
   l.mutex.Lock()
   defer l.mutex.Unlock()

   // 获取当前小窗口值
   currentSmallWindow := time.Now().UnixNano() / l.smallWindow * l.smallWindow
   // 获取起始小窗口值
   startSmallWindow := currentSmallWindow - l.smallWindow*(l.smallWindows-1)

   // 计算当前窗口的请求总数
   var count int
   for smallWindow, counter := range l.counters {
      if smallWindow < startSmallWindow {
         delete(l.counters, smallWindow)
      } else {
         count += counter
      }
   }

   // 若到达窗口请求上限,请求失败
   if count >= l.limit {
      return false
   }
   // 若没到窗口请求上限,当前小窗口计数器+1,请求成功
   l.counters[currentSmallWindow]++
   return true
}

漏桶算法

漏桶是模拟一个漏水的桶,请求相当于往桶里倒水,处理请求的速度相当于水漏出的速度。

主要用于请求处理速率较为稳定的服务,需要使用生产者消费者模式把请求放到一个队列里,让消费者以一个较为稳定的速率处理。

package limiter

import (
   "sync"
   "time"
)

// LeakyBucketLimiter 漏桶限流器
type LeakyBucketLimiter struct {
   peakLevel       int        // 最高水位
   currentLevel    int        // 当前水位
   currentVelocity int        // 水流速度/秒
   lastTime        time.Time  // 上次放水时间
   mutex           sync.Mutex // 避免并发问题
}

func NewLeakyBucketLimiter(peakLevel, currentVelocity int) *LeakyBucketLimiter {
   return &LeakyBucketLimiter{
      peakLevel:       peakLevel,
      currentVelocity: currentVelocity,
      lastTime:        time.Now(),
   }
}

func (l *LeakyBucketLimiter) TryAcquire() bool {
   l.mutex.Lock()
   defer l.mutex.Unlock()

   // 尝试放水
   now := time.Now()
   // 距离上次放水的时间
   interval := now.Sub(l.lastTime)
   if interval >= time.Second {
      // 当前水位-距离上次放水的时间(秒)*水流速度
      l.currentLevel = maxInt(0, l.currentLevel-int(interval/time.Second)*l.currentVelocity)
      l.lastTime = now
   }

   // 若到达最高水位,请求失败
   if l.currentLevel >= l.peakLevel {
      return false
   }
   // 若没有到达最高水位,当前水位+1,请求成功
   l.currentLevel++
   return true
}

func maxInt(a, b int) int {
   if a > b {
      return a
   }
   return b
}

令牌桶

与漏桶算法的相反,令牌桶会不断地把令牌添加到桶里,而请求会从桶中获取令牌,只有拥有令牌地请求才能被接受。

因为桶中可以提前保留一些令牌,所以它允许一定地突发流量通过。

package limiter

import (
   "sync"
   "time"
)

// TokenBucketLimiter 令牌桶限流器
type TokenBucketLimiter struct {
   capacity      int        // 容量
   currentTokens int        // 令牌数量
   rate          int        // 发放令牌速率/秒
   lastTime      time.Time  // 上次发放令牌时间
   mutex         sync.Mutex // 避免并发问题
}

func NewTokenBucketLimiter(capacity, rate int) *TokenBucketLimiter {
   return &TokenBucketLimiter{
      capacity: capacity,
      rate:     rate,
      lastTime: time.Now(),
   }
}

func (l *TokenBucketLimiter) TryAcquire() bool {
   l.mutex.Lock()
   defer l.mutex.Unlock()

   // 尝试发放令牌
   now := time.Now()
   // 距离上次发放令牌的时间
   interval := now.Sub(l.lastTime)
   if interval >= time.Second {
      // 当前令牌数量+距离上次发放令牌的时间(秒)*发放令牌速率
      l.currentTokens = minInt(l.capacity, l.currentTokens+int(interval/time.Second)*l.rate)
      l.lastTime = now
   }

   // 如果没有令牌,请求失败
   if l.currentTokens == 0 {
      return false
   }
   // 如果有令牌,当前令牌-1,请求成功
   l.currentTokens--
   return true
}

func minInt(a, b int) int {
   if a < b {
      return a
   }
   return b
}

滑动日志

滑动日志与滑动窗口算法类似,但是滑动日志主要用于多级限流的场景,比如短信验证码1分钟1次,1小时10次,1天20次这种业务。

算法流程与滑动窗口相同,只是它可以指定多个策略,同时在请求失败的时候,需要通知调用方是被哪个策略所拦截。

package limiter

import (
   "errors"
   "fmt"
   "sort"
   "sync"
   "time"
)

// ViolationStrategyError 违背策略错误
type ViolationStrategyError struct {
   Limit  int           // 窗口请求上限
   Window time.Duration // 窗口时间大小
}

func (e *ViolationStrategyError) Error() string {
   return fmt.Sprintf("violation strategy that limit = %d and window = %d", e.Limit, e.Window)
}

// SlidingLogLimiterStrategy 滑动日志限流器的策略
type SlidingLogLimiterStrategy struct {
   limit        int   // 窗口请求上限
   window       int64 // 窗口时间大小
   smallWindows int64 // 小窗口数量
}

func NewSlidingLogLimiterStrategy(limit int, window time.Duration) *SlidingLogLimiterStrategy {
   return &SlidingLogLimiterStrategy{
      limit:  limit,
      window: int64(window),
   }
}

// SlidingLogLimiter 滑动日志限流器
type SlidingLogLimiter struct {
   strategies  []*SlidingLogLimiterStrategy // 滑动日志限流器策略列表
   smallWindow int64                        // 小窗口时间大小
   counters    map[int64]int                // 小窗口计数器
   mutex       sync.Mutex                   // 避免并发问题
}

func NewSlidingLogLimiter(smallWindow time.Duration, strategies ...*SlidingLogLimiterStrategy) (*SlidingLogLimiter, error) {
   // 复制策略避免被修改
   strategies = append(make([]*SlidingLogLimiterStrategy, 0, len(strategies)), strategies...)

   // 不能不设置策略
   if len(strategies) == 0 {
      return nil, errors.New("must be set strategies")
   }

   // 排序策略,窗口时间大的排前面,相同窗口上限大的排前面
   sort.Slice(strategies, func(i, j int) bool {
      a, b := strategies[i], strategies[j]
      if a.window == b.window {
         return a.limit > b.limit
      }
      return a.window > b.window
   })
   fmt.Println(strategies[0], strategies[1])

   for i, strategy := range strategies {
      // 随着窗口时间变小,窗口上限也应该变小
      if i > 0 {
         if strategy.limit >= strategies[i-1].limit {
            return nil, errors.New("the smaller window should be the smaller limit")
         }
      }
      // 窗口时间必须能够被小窗口时间整除
      if strategy.window%int64(smallWindow) != 0 {
         return nil, errors.New("window cannot be split by integers")
      }
      strategy.smallWindows = strategy.window / int64(smallWindow)
   }

   return &SlidingLogLimiter{
      strategies:  strategies,
      smallWindow: int64(smallWindow),
      counters:    make(map[int64]int),
   }, nil
}

func (l *SlidingLogLimiter) TryAcquire() error {
   l.mutex.Lock()
   defer l.mutex.Unlock()

   // 获取当前小窗口值
   currentSmallWindow := time.Now().UnixNano() / l.smallWindow * l.smallWindow
   // 获取每个策略的起始小窗口值
   startSmallWindows := make([]int64, len(l.strategies))
   for i, strategy := range l.strategies {
      startSmallWindows[i] = currentSmallWindow - l.smallWindow*(strategy.smallWindows-1)
   }

   // 计算每个策略当前窗口的请求总数
   counts := make([]int, len(l.strategies))
   for smallWindow, counter := range l.counters {
      if smallWindow < startSmallWindows[0] {
         delete(l.counters, smallWindow)
         continue
      }
      for i := range l.strategies {
         if smallWindow >= startSmallWindows[i] {
            counts[i] += counter
         }
      }
   }

   // 若到达对应策略窗口请求上限,请求失败,返回违背的策略
   for i, strategy := range l.strategies {
      if counts[i] >= strategy.limit {
         return &ViolationStrategyError{
            Limit:  strategy.limit,
            Window: time.Duration(strategy.window),
         }
      }
   }

   // 若没到窗口请求上限,当前小窗口计数器+1,请求成功
   l.counters[currentSmallWindow]++
   return nil
}

总结

  • 如果需要一个简单高效的算法,可以使用固定窗口,但是它可能产生两倍的突发流量
  • 可以通过滑动窗口避免突发流量问题,但是窗口可能会掐断流量一段时间
  • 如果需要更平滑的流量,可以使用漏桶算法搭配生产者消费者模式
  • 如果能够处理一定的突发流量,可以使用令牌桶算法
  • 遇到多级限流的场景,滑动日志会更加适合

全部源码:https://github.com/jiaxwu/limiter

到此这篇关于Golang实现常见的限流算法的示例代码的文章就介绍到这了,更多相关Golang限流算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • golang高并发系统限流策略漏桶和令牌桶算法源码剖析

    目录 前言 漏桶算法 样例 源码实现 令牌桶算法 样例 源码剖析 Limit类型 Limiter结构体 Reservation结构体 Limiter消费token limiter归还Token 总结 前言 今天与大家聊一聊高并发系统中的限流技术,限流又称为流量控制,是指限制到达系统的并发请求数,当达到限制条件则可以拒绝请求,可以起到保护下游服务,防止服务过载等作用.常用的限流策略有漏桶算法.令牌桶算法.滑动窗口:下文主要与大家一起分析一下漏桶算法和令牌桶算法,滑动窗口就不在这里这介绍了.好啦,废

  • Go 基于令牌桶的限流器实现

    目录 简介 原理概述 具体实现原理 限流器如何限流 简介 如果一般流量过大,下游系统反应不过来,这个时候就需要限流了,其实和上地铁是一样的,就是减慢上游访问下游的速度. 限制访问服务的频次或者频率,防止服务过载,被刷爆等. Golang 官方扩展包 time(golang.org/x/time/rate) 中,提供了一个基于令牌桶等限流器实现. 原理概述 令牌:每次拿到令牌,才可访问 桶 ,桶的最大容量是固定的,以固定的频率向桶内增加令牌,直至加满 每个请求消耗一个令牌. 限流器初始化的时候,令

  • go实现限流功能示例

    目录 引言 需求背景 web demo搭建 限制访问次数编写 功能测试 总结 引言 在我们日常维护中,经常有爬虫进行爬取网页,少则1秒钟请求数十次,多则达百次,严重消耗了服务器带宽,且影响正常使用者,好在nginx可以配合lua可以完成类似的需求,本次我们将使用go来完成本需求. 需求背景 在我们日常维护中,可能需要这样一种工具,来对某些路由,对特定IP或者用户ID,在特定时间内,限制最大访问次数,这样有效的避免服务器带宽资源的浪费的同时也能接入更多用户请求,本次使用go来做一个类似的. web

  • Golang官方限流器库实现限流示例详解

    目录 前言 例子 实现 小结 前言 在翻Golang官方库的过程中,发现一个有趣的库golang.org/x/time ,里面只有一个类rate,研究了一下发现它是一个限流器,实现了很多的功能,当然它的核心原理并不复杂,也就是令牌桶算法. 令牌桶算法的原理是:令牌桶会不断地把令牌添加到桶里,而请求会从桶中获取令牌,只有拥有令牌地请求才能被接受.因为桶中可以提前保留一些令牌,所以它允许一定地突发流量通过. 例子 下面是限流算法常见的写法,首先判断是否有令牌,如果有就通过,否则直接失败. packa

  • Go实现各类限流的方法

    前 言 在开发高并发系统时,我们可能会遇到接口访问频次过高,为了保证系统的高可用和稳定性,这时候就需要做流量限制,你可能是用的 Nginx 这种来控制请求,也可能是用了一些流行的类库实现.限流是高并发系统的一大杀器,在设计限流算法之前我们先来了解一下它们是什么. 限 流 限流的目的是通过对并发访问请求进行限速,或者对一个时间窗口内的请求进行限速来保护系统,一旦达到限制速率则可以拒绝服务.排队或等待.降级等处理.通过对并发(或者一定时间窗口内)请求进行限速来保护系统,一旦达到限制速率则拒绝服务(定

  • Golang实现常见的限流算法的示例代码

    目录 固定窗口 滑动窗口 漏桶算法 令牌桶 滑动日志 总结 限流是项目中经常需要使用到的一种工具,一般用于限制用户的请求的频率,也可以避免瞬间流量过大导致系统崩溃,或者稳定消息处理速率 这个文章主要是使用Go实现常见的限流算法,代码参考了文章面试官:来,年轻人!请手撸5种常见限流算法! 和面试必备:4种经典限流算法讲解如果需要Java实现或更详细的算法介绍可以看这两篇文章 固定窗口 每开启一个新的窗口,在窗口时间大小内,可以通过窗口请求上限个请求. 该算法主要是会存在临界问题,如果流量都集中在两

  • Go+Redis实现常见限流算法的示例代码

    目录 固定窗口 滑动窗口 hash实现 list实现 漏桶算法 令牌桶 滑动日志 总结 限流是项目中经常需要使用到的一种工具,一般用于限制用户的请求的频率,也可以避免瞬间流量过大导致系统崩溃,或者稳定消息处理速率.并且有时候我们还需要使用到分布式限流,常见的实现方式是使用Redis作为中心存储. 这个文章主要是使用Go+Redis实现常见的限流算法,如果需要了解每种限流算法的原理可以阅读文章 Go实现常见的限流算法 下面的代码使用到了go-redis客户端 固定窗口 使用Redis实现固定窗口比

  • Java 常见的限流算法详细分析并实现

    目录 为什么要限流 限流算法 计数器限流 漏桶限流 令牌桶限流 为什么要限流 在保证可用的情况下尽可能多增加进入的人数,其余的人在排队等待,或者返回友好提示,保证里面的进行系统的用户可以正常使用,防止系统雪崩. 限流算法 限流算法很多,常见的有三类,分别是 计数器算法 .漏桶算法.令牌桶算法 . (1)计数器:           在一段时间间隔内,处理请求的最大数量固定,超过部分不做处理. (2)漏桶:           漏桶大小固定,处理速度固定,但请求进入速度不固定(在突发情况请求过多时

  • redis lua限流算法实现示例

    目录 限流算法 计数器算法 场景分析 算法实现 漏铜算法 令牌桶算法: 算法实现 限流算法 常见的限流算法 计数器算法 漏桶算法 令牌桶算法 计数器算法   顾名思义,计数器算法是指在一定的时间窗口内允许的固定数量的请求.比如,2s内允许10个请求,30s内允许100个请求等等.如果设置的时间粒度越细,那么相对而言限流就会越平滑,控制的粒度就会更细. 场景分析 试想,如果设置的粒度比较粗会出现什么样的问题呢?如下图设置一个 1000/3s 的限流计数统计. 图中的限流策略为3s内允许的最大请求量

  • Redis常见限流算法原理及实现

    目录 前言 简介 固定时间窗口 原理 示例说明 优缺点 相关实现 限流脚本 具体实现 测试 滑动时间窗口 实现原理 示例说明 具体实现 漏桶算法 原理 具体实现 令牌桶算法 原理 具体实现 小结 总结 前言 在高并发系统中,我们通常需要通过各种手段来提供系统的可以用性,例如缓存.降级和限流等,本文将针对应用中常用的限流算法进行详细的讲解. 简介 限流简称流量限速(Rate Limit)是指只允许指定的事件进入系统,超过的部分将被拒绝服务.排队或等待.降级等处理. 常见的限流方案如下: 固定时间窗

  • 详解5种Java中常见限流算法

    目录 01固定窗口 02滑动窗口 03漏桶算法 04令牌桶 05滑动日志 06分布式限流 07总结 1.瞬时流量过高,服务被压垮? 2.恶意用户高频光顾,导致服务器宕机? 3.消息消费过快,导致数据库压力过大,性能下降甚至崩溃? ...... 在高并发系统中,出于系统保护角度考虑,通常会对流量进行限流:不但在工作中要频繁使用,而且也是面试中的高频考点. 今天我们将图文并茂地对常见的限流算法分别进行介绍,通过各个算法的特点,给出限流算法选型的一些建议,并给出Java语言实现的代码示例. 01固定窗

  • Java中4种经典限流算法讲解

    目录 限流是什么? 常见的限流算法 固定窗口限流算法 滑动窗口限流算法 漏桶算法 令牌桶算法 最近,我们的业务系统引入了Guava的RateLimiter限流组件,它是基于令牌桶算法实现的,而令牌桶是非常经典的限流算法.本文将跟大家一起学习几种经典的限流算法. 限流是什么? 维基百科的概念如下: In computer networks, rate limiting is used to control the rate of requests sent or received by a net

  • 详解基于redis实现的四种常见的限流策略

    目录 一.引言 二.固定时间窗口算法 三.滑动时间窗口算法 四.漏桶算法 五.令牌桶算法 一.引言 在web开发中功能是基石,除了功能以外运维和防护就是重头菜了.因为在网站运行期间可能会因为突然的访问量导致业务异常.也有可能遭受别人恶意攻击 所以我们的接口需要对流量进行限制.俗称的QPS也是对流量的一种描述 针对限流现在大多应该是令牌桶算法,因为它能保证更多的吞吐量.除了令牌桶算法还有他的前身漏桶算法和简单的计数算法 下面我们来看看这四种算法 二.固定时间窗口算法 固定时间窗口算法也可以叫做简单

  • 浅析Spring Cloud Gateway中的令牌桶限流算法

    目录 前言 回顾限流算法 计数器/时间窗口法 漏桶法 令牌桶法 主要逻辑分析 前言 在一个分布式高并发的系统设计中,限流是一个不可忽视的功能点.如果不对系统进行有效的流量访问限制,在双十一和抢票这种流量洪峰的场景下,很容易就会把我们的系统打垮.而作为系统服务的卫兵的网关组件,作为系统服务的统一入口,更需要考虑流量的限制,直接在网关层阻断流量比在各个系统中实现更合适.Spring Cloud Gateway的实现中,就提供了限流的功能,下面主要分析下Spring Cloud Gateway中是如何

随机推荐