pandas创建DataFrame对象失败的解决方法

目录
  • 报错代码
  • 报错翻译
  • 报错原因
  • 解决方法
  • 创建DataFrame对象的四种方法
    • 1. list列表构建DataFrame
    • 2. dict字典构建DataFrame
    • 3. ndarray创建DataFrame
    • 4. Series创建DataFrame

报错代码

粉丝群一个小伙伴想pandas创建DataFrame对象,但是发生了报错(当时他心里瞬间凉了一大截,跑来找我求助,然后顺利帮助他解决了,顺便记录一下希望可以帮助到更多遇到这个bug不会解决的小伙伴),报错代码如下:

import pandas as pd

data = {'name': ['a', 'b'],
        'Height': [140, 150, 160, 170],
        'Weight': [40, 50, 60, 70]}
df = pd.DataFrame(data, index=list('abcd'))
print(df)

报错信息截图如下所示:

报错翻译

报错信息翻译如下

值错误:传递值的形状为(2,3),索引表示(4,3)

报错原因

传递创建DataFrame的值和索引对不上,小伙伴们按下面正确的方法创建即可!!!

解决方法

每一个列表的长度都要相同

import pandas as pd

data = {'name': ['a', 'b','c','d'],
        'Height': [155, 160, 175, 180],
        'Weight': [50, 48, 52, 65]}
df = pd.DataFrame(data, index=list('abcd'))
print(df)

运行结果:

创建DataFrame对象的四种方法

DataFrame 构造方法如下:

pandas.DataFrame( data, index, columns, dtype, copy)

参数说明:

  • data:一组数据(ndarray、series, map, lists, dict 等类型)。
  • index:索引值,或者可以称为行标签。
  • columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。
  • dtype:数据类型。
  • copy:拷贝数据,默认为 False。

1. list列表构建DataFrame

1)通过单列表创建

>>> import pandas as pd
>>>
>>> data = [0, 1, 2, 3, 4, 5]
>>> df = pd.DataFrame(data)
>>> print(df)
   0
0  0
1  1
2  2
3  3
4  4
5  5
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

2)通过嵌套列表创建

>>> import pandas as pd
>>>
>>> data = [['小明', 20], ['小红', 10]]
>>> df = pd.DataFrame(data, columns=['name', 'age'], dtype=float)
sys:1: FutureWarning: Could not cast to float64, falling back to object. This behavior is deprecated. In a future version, when a dtype is passed to 'DataFrame', either all columns will be cast to that dtype, or a TypeError will be raised
>>> print(df)
  name   age
0   小明  20.0
1   小红  10.0
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

3)列表中嵌套字典(字典的键被用作列名,缺失则赋值为NaN):

>>> import pandas as pd
>>>
>>> data = [{'A': 1, 'B': 2}, {'A': 3, 'B': 4, 'C': 5}]
>>> df = pd.DataFrame(data)
>>> print(df)
   A  B    C
0  1  2  NaN
1  3  4  5.0
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

2. dict字典构建DataFrame

使用 dict 创建,dict中列表的长度必须相同, 如果传递了index,则索引的长度应等于数组的长度。如果没有传递索引,则默认情况下,索引将是range(n),其中n是数组长度。

1)普通创建:

>>> import pandas as pd
>>>
>>> data = {'name': ['小红', '小明', '小白'], 'age': [10, 20, 30]}
>>> df = pd.DataFrame(data)
>>> print(df)
  name  age
0   小红   10
1   小明   20
2   小白   30
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

2)设置index创建:

>>> import pandas as pd
>>>
>>> data = {'name': ['小红', '小明', '小白'], 'age': [10, 20, 30]}
>>> df = pd.DataFrame(data, index=['老三', '老二', '老大'])
>>> print(df)
   name  age
老三   小红   10
老二   小明   20
老大   小白   30
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

3. ndarray创建DataFrame

1)普通方式创建:

>>> import pandas as pd
>>> import numpy as np
>>>
>>> data = np.random.randn(3, 3)
>>> print(data)
[[-1.9332579   0.70876382 -0.44291914]
 [-0.26228642 -1.05200338  0.57390067]
 [-0.49433001  0.70472595 -0.50749279]]
>>> print(type(data))
<class 'numpy.ndarray'>
>>> df = pd.DataFrame(data)
>>> print(df)
          0         1         2
0 -1.933258  0.708764 -0.442919
1 -0.262286 -1.052003  0.573901
2 -0.494330  0.704726 -0.507493
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

2)设置列名创建:

>>> import pandas as pd
>>> import numpy as np
>>>
>>> data = np.random.randn(3, 3)
>>> print(data)
[[-0.22028147  0.62374794 -0.66210282]
 [-0.71785439 -1.21004547  1.15663811]
 [ 1.47843923  0.4385811   0.31931312]]
>>> print(type(data))
<class 'numpy.ndarray'>
>>> df = pd.DataFrame(data, columns=list("ABC"))
>>> print(df)
          A         B         C
0 -0.220281  0.623748 -0.662103
1 -0.717854 -1.210045  1.156638
2  1.478439  0.438581  0.319313
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

4. Series创建DataFrame

>>> import pandas as pd
>>>
>>> data = {'A': pd.Series(1, index=list(range(4)), dtype='float32'),
...         'B': pd.Series(2, index=list(range(4)), dtype='float32'),
...         'C': pd.Series(3, index=list(range(4)), dtype='float32')
...         }
>>> df = pd.DataFrame(data)
>>> print(df)
     A    B    C
0  1.0  2.0  3.0
1  1.0  2.0  3.0
2  1.0  2.0  3.0
3  1.0  2.0  3.0
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

帮忙解决

到此这篇关于pandas创建DataFrame对象失败的解决方法的文章就介绍到这了,更多相关pandas创建DataFrame对象失败内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Pandas:DataFrame对象的基础操作方法

    DataFrame对象的创建,修改,合并 import pandas as pd import numpy as np 创建DataFrame对象 # 创建DataFrame对象 df = pd.DataFrame([1, 2, 3, 4, 5], columns=['cols'], index=['a','b','c','d','e']) print df cols a 1 b 2 c 3 d 4 e 5 df2 = pd.DataFrame([[1, 2, 3],[4, 5, 6]], co

  • 从列表或字典创建Pandas的DataFrame对象的方法

    介绍 每当我使用pandas进行分析时,我的第一个目标是使用众多可用选项中的一个将数据导入Pandas的DataFrame . 对于绝大多数情况下,我使用的 read_excel , read_csv 或 read_sql . 但是,有些情况下我只需要几行数据或包含这些数据里的一些计算. 在这些情况下,了解如何从标准python列表或字典创建DataFrames会很有帮助. 基本过程并不困难,但因为有几种不同的选择,所以有助于理解每种方法的工作原理. 我永远记不住我是否应该使用 from_dic

  • Pandas数据结构详细说明及如何创建Series,DataFrame对象方法

    目录 1. Pandas的两种数据类型 2. Series类型 通过numpy array 通过Python字典 通过标量值(Scalar) name属性 3. DataFrame类型 通过包含列表的Python List 通过包含Python 字典的Python List 通过Series 在网络上的Pandas教程中,很多都提到了如何使用Pandas将已有的数据(如csv,如hdfs等)直接加载成Pandas数据对象,然后在其基础上进行数据分析操作,但是,很多时候,我们需要自己创建Panda

  • Pandas之DataFrame对象的列和索引之间的转化

    约定: import pandas as pd DataFrame对象的列和索引之间的转化 我们常常需要将DataFrame对象中的某列或某几列作为索引,或者将索引转化为对象的列.pandas提供了set_index()/reset_index() 来供我们使用. 一.列转化为索引 df1=pd.DataFrame({'X':range(5),'Y':range(5),'S':list("aaabb"),'Z':[1,1,2,2,2]}) df1 代码结果: S X Y Z 0 a 0

  • 详解pandas中利用DataFrame对象的.loc[]、.iloc[]方法抽取数据

    pandas的DataFrame对象,本质上是二维矩阵,跟常规二维矩阵的差别在于前者额外指定了每一行和每一列的名称.这样内部数据抽取既可以用"行列名称(对应.loc[]方法)",也可以用"矩阵下标(对应.iloc[]方法)"两种方式进行. 下面具体说明: (以下程序均在Jupyter notebook中进行,部分语句的print()函数省略) 首先生成一个DataFrame对象: import pandas as pd score = [[34,67,87],[68

  • pandas创建DataFrame对象失败的解决方法

    目录 报错代码 报错翻译 报错原因 解决方法 创建DataFrame对象的四种方法 1. list列表构建DataFrame 2. dict字典构建DataFrame 3. ndarray创建DataFrame 4. Series创建DataFrame 报错代码 粉丝群一个小伙伴想pandas创建DataFrame对象,但是发生了报错(当时他心里瞬间凉了一大截,跑来找我求助,然后顺利帮助他解决了,顺便记录一下希望可以帮助到更多遇到这个bug不会解决的小伙伴),报错代码如下: import pan

  • pandas创建DataFrame的7种方法小结

    笔者在学习pandas,在学习过程中总结了一下创建dataframe的方法,通过查阅资料总结遗下几种方法,如果你有其他的方法欢迎留言补充. 练习代码 请点击此处下载 学习环境: 第一种: 用Python中的字典生成 第二种: 利用指定的列内容.索引以及数据 第三种:通过读取文件,可以是json,csv,excel等等. 本文例子就用excel, 上篇博客笔者已经用csv举例了.这里要注意,如果用excel请先安装xlrd这个包 这个文件笔者放在代码同目录 第四种:用numpy中的array生成

  • Spring自动注入失败的解决方法

    Spring自动注入失败如何解决? 我有一个被Spring @Service注解的类(MileageFeeCalculator),它有一个用@Autowired注入的变量(rateService),但是当我用这个变量的时候,它显示为null.日志显示MileageFeeCalculator bean和MileageRateService bean都被创建了,但是当我调用service上的mileageCharge ()方法时,就会报NullPointerException错误.为什么Spring

  • 微信小程序首页数据初始化失败的解决方法

    一. 问题描述 用户首次后再次进入小程序时,我们通常需要通过获取用户openid或unionid用作唯一标示与后台进行数据交流,初始化用户信息.当我们通过第三方服务器跟微信建立请求时,微信需要用户确认是否公开信息.如图1,从console可以看到,在请求的同时,我们的首页index已经加载完成,图中初始化数据显示为空.无论我们将请求信息写在app.js的onload中或者index.js中,当我们点击确认后,请求信息才执行success方法,将第三方服务器返回的数据处理,这样的因需要用户点击而产

  • SQL Server 2008 R2登录失败的解决方法

    为大家分享SQL Server 2008 R2登录失败的解决方法 1.启动SQL Server 2008 Management Studio,会看到 2.里面有一个 身份验证.这个 身份验证 的下拉列表里面有两个选项: Windows 身份验证 和 SQL Server 身份验证. 它们有什么区别: Windows 身份验证是指:你可以使用你电脑Windows系统的用户名和密码进行登入.如果你的电脑没有设置密码,那么就不需要输入用户名和密码,直接点击连接就可以登入. 我们一般使用第二种身份验证:

  • php中mail函数发送邮件失败的解决方法

    本文实例讲述了php中mail函数发送邮件失败的解决方法.分享给大家供大家参考.具体分析如下: php中mail函数是一个自带的发邮件的函数,但是如果你真的要使用mail函数来发邮件那必须是要给你系统安装sendmail组件才可以,下面我就碰到mail发送不了邮件的问题,下面一起来看看解决办法吧. 之前的那台服务器转移过来后,发现网站用mail()发送邮件发不了,但是发现sendmail明明已经安装,如果没有安装sendmail可以执行,代码如下: 复制代码 代码如下: yum install

  • Linux程序运行时加载动态库失败的解决方法

    Linux下不能加载动态库问题 当出现下边异常情况 ./test: error while loading shared libraries: libmfs_open.so: cannot open shared object file: No such file or directory 若动态库的路径在(/usr/cluster/.share/lib) 解决办法: 方法一.在/etc/ld.so.conf文件中添加路径,vi /etc/ld.so.conf 添加下边内容 include ld

  • Android中的Bitmap序列化失败的解决方法

    之前写了个User类(实现了Serializable接口),类变量里有Bitmap类型的头像图片,Bitmap导致序列化不成功,报 "android.graphics.Bitmap"相关错误 解决方法之一:把Bitmap对象替换成byte数组来表示间接表示图片,在需要Bitmap的时候再讲byte数组转换成Bitmap对象.这是因为byte数组和Bitmap之间的可以转化,实现也比较方便. 附byte数组与Bitmap的相互转换方法: Bitmap转换成byte数组 private b

  • django数据库migrate失败的解决方法解析

    Django是一个MVC架构的web框架,其中,数据库就是"Module".使用这种框架,我们不必写一条SQL语句,就可以完成对数据库的所有操作.在之前的Django版本中,我们像操作本地对象那样操作数据对象,在更改保存之后,执行python manage.py syncdb命令来同步数据库,在我使用的1.9.2版本中,需要依次执行一下步骤: python manage.py makemigrations (这个命令会根据你对数据库做出的更改生成操作数据库的python脚本) pyth

  • Java在指定路径上创建文件提示不存在解决方法

    如果 d:\upload\file\ 文件夹不存在,会报错 String strPath = "d:\\upload\\file\\2.mp3"; File file = new File(strPath); if(!file.exists())){ file.createNewFile(); } 以下会创建文件夹 d:\\upload\\file\\2.mp3\ String strPath = "d:\\upload\\file\\2.mp3"; File fi

随机推荐