在Python的Django框架上部署ORM库的教程

Python ORM 概览

作为一个美妙的语言,Python 除了 SQLAlchemy外还有很多ORM库。在这篇文章里,我们将来看看几个流行的可选ORM库,以此更好地窥探到Python ORM 境况。通过写一段脚本来读写2个表 ,person 和 address 到一个简单的数据库,我们能更好地理解每个ORM库的优缺点。

SQLObject

SQLObject 是一个介于SQL数据库和Python之间映射对象的Python ORM。得益于其类似于Ruby on Rails的ActiveRecord模式,在编程社区变得越来越流行。首个 SQLObject在2002年十月发布。它遵循LGPL许可。

SQLObject 中,数据库概念是通过与 SLQAlchemy 非常类似的的一种方式映射到Python的,表映射成类,行作为实例而字段作为属性。它同时提供一种基于Python对象的查询语言,这使得SQL更加抽象, 从而为应用提供了数据库不可知性(译注:应用和数据库分离)

$ pip install sqlobject
Downloading/unpacking sqlobject
Downloading SQLObject-1.5.1.tar.gz (276kB): 276kB downloaded
Running setup.py egg_info for package sqlobject

warning: no files found matching '*.html'
warning: no files found matching '*.css'
warning: no files found matching 'docs/*.html'
warning: no files found matching '*.py' under directory 'tests'
Requirement already satisfied (use --upgrade to upgrade): FormEncode>=1.1.1 in /Users/xiaonuogantan/python2-workspace/lib/python2.7/site-packages (from sqlobject)
Installing collected packages: sqlobject
Running setup.py install for sqlobject
changing mode of build/scripts-2.7/sqlobject-admin from 644 to 755
changing mode of build/scripts-2.7/sqlobject-convertOldURI from 644 to 755

warning: no files found matching '*.html'
warning: no files found matching '*.css'
warning: no files found matching 'docs/*.html'
warning: no files found matching '*.py' under directory 'tests'
changing mode of /Users/xiaonuogantan/python2-workspace/bin/sqlobject-admin to 755
changing mode of /Users/xiaonuogantan/python2-workspace/bin/sqlobject-convertOldURI to 755
Successfully installed sqlobject
Cleaning up...

>>> from sqlobject import StringCol, SQLObject, ForeignKey, sqlhub, connectionForURI
>>> sqlhub.processConnection = connectionForURI('sqlite:/:memory:')
>>>
>>> class Person(SQLObject):
... name = StringCol()
...
>>> class Address(SQLObject):
... address = StringCol()
... person = ForeignKey('Person')
...
>>> Person.createTable()
[]
>>> Address.createTable()
[]

上面的代码创建了2个简单的表:person 和 address 。为了创建和插入记录到这2个表,我们简单实例化一个person 实例和 一个 address 实例:

>>> p = Person(name='person')
>>> a = Address(address='address', person=p)
>>> p

>>> a

<address>

为了获得或检索新记录, 我们用神奇的 q 对象关联到 Person 和 Address 类:

>>> persons = Person.select(Person.q.name == 'person')
>>> persons

>>> list(persons)
[]
>>> p1 = persons[0]
>>> p1 == p
True
>>> addresses = Address.select(Address.q.person == p1)
>>> addresses

>>> list(addresses)
[

<address>]
>>> a1 = addresses[0]
>>> a1 == a
True

Storm

Storm是一个介于 单个或多个数据库与Python之间 映射对象的 Python ORM 。为了支持动态存储和取回对象信息,它允许开发者构建跨数据表的复杂查询。它由Ubuntu背后的公司 Canonical公司用Python开发的,用在 Launchpad和 Landscape 应用中,后来在2007年作为自由软件发布。这个项目在LGPL许可下发布,代码贡献者必须受让版权给Canonical公司。

像 SQLAlchemy 和 SQLObject 那样, Storm 也映射表到类,行到实例和字段到属性。相对另外2个库, Stom中 table class 不需要是框架特定基类 的子类 。在 SQLAlchemy中,每个 table class 是 sqlalchemy.ext.declarative.declarative_bas 的一个子类。 而在SQLOjbect中,每个table class是 的 sqlobject.SQLObject 的子类。

类似于 SQLAlchemy, Storm 的 Store 对象对于后端数据库就像一个代理人, 所有的操作缓存在内存,一当提交方法在store上被调用就提交到数据库。每个 store 持有自己的Python数据库对象映射集合,就像一个 SQLAlchemy session 持有不同的 Python对象集合。

指定版本的 Storm 可以从 下载页面 下载。在这篇文章里,示例代码是使用 0.20 版本的Storm写的。

>>> from storm.locals import Int, Reference, Unicode, create_database, Store
>>>
>>>
>>> db = create_database('sqlite:')
>>> store = Store(db)
>>>
>>>
>>> class Person(object):
... __storm_table__ = 'person'
... id = Int(primary=True)
... name = Unicode()
...
>>>
>>> class Address(object):
... __storm_table__ = 'address'
... id = Int(primary=True)
... address = Unicode()
... person_id = Int()
... person = Reference(person_id, Person.id)
...

上面的代码创建了一个 sqlite 内存数据库,然后用 store 来引用该数据库对象。一个Storm store 类似 SQLAlchemy的 DBSession对象,都管理 附属于其的实例对象 的生命周期。例如,下面的代码创建了一个 person 和 一个 address, 然后通过刷新 store 都插入记录。

>>> store.execute("CREATE TABLE person "
... "(id INTEGER PRIMARY KEY, name VARCHAR)")

>>> store.execute("CREATE TABLE address "
... "(id INTEGER PRIMARY KEY, address VARCHAR, person_id INTEGER, "
... " FOREIGN KEY(person_id) REFERENCES person(id))")

>>> person = Person()
>>> person.name = u'person'
>>> print person

>>> print "%r, %r" % (person.id, person.name)
None, u'person' # Notice that person.id is None since the Person instance is not attached to a valid database store yet.
>>> store.add(person)

>>> print "%r, %r" % (person.id, person.name)
None, u'person' # Since the store hasn't flushed the Person instance into the sqlite database yet, person.id is still None.
>>> store.flush()
>>> print "%r, %r" % (person.id, person.name)
1, u'person' # Now the store has flushed the Person instance, we got an id value for person.
>>> address = Address()
>>> address.person = person
>>> address.address = 'address'
>>> print "%r, %r, %r" % (address.id, address.person, address.address)
None, , 'address'
>>> address.person == person
True
>>> store.add(address)

>>> store.flush()
>>> print "%r, %r, %r" % (address.id, address.person, address.address)
1, , 'address'

为了获得或检索已插的 Person 和 Address 对象, 我们调用 store.find() 来查询:

>>> person = store.find(Person, Person.name == u'person').one()
>>> print "%r, %r" % (person.id, person.name)
1, u'person'
>>> store.find(Address, Address.person == person).one()

>>> address = store.find(Address, Address.person == person).one()
>>> print "%r, %r" % (address.id, address.address)
1, u'address'

Django 的 ORM

Django 是一个免费开源的紧嵌ORM到其系统的web应用框架。在它首次发布后,得益于其易用为Web而备的特点,Django越来越流行。它在2005年七月在BSD许可下发布。因为Django的ORM 是紧嵌到web框架的,所以就算可以也不推荐,在一个独立的非Django的Python项目中使用它的ORM。

Django,一个最流行的Python web框架, 有它独有的 ORM。 相比 SQLAlchemy, Django 的 ORM 更吻合于直接操作SQL对象,操作暴露了简单直接映射数据表和Python类的SQL对象 。

$ django-admin.py startproject demo
$ cd demo
$ python manage.py syncdb
Creating tables ...
Creating table django_admin_log
Creating table auth_permission
Creating table auth_group_permissions
Creating table auth_group
Creating table auth_user_groups
Creating table auth_user_user_permissions
Creating table auth_user
Creating table django_content_type
Creating table django_session

You just installed Django's auth system, which means you don't have any superusers defined.
Would you like to create one now? (yes/no): no
Installing custom SQL ...
Installing indexes ...
Installed 0 object(s) from 0 fixture(s)
$ python manage.py shell

因为我们在没有先建立一个项目时不能够执行Django代码,所以我们在前面的shell创建一个Django demo 项目,然后进入Django shell来测试我们写的 ORM 例子。

# demo/models.py
>>> from django.db import models
>>>
>>>
>>> class Person(models.Model):
... name = models.TextField()
... class Meta:
... app_label = 'demo'
...
>>>
>>> class Address(models.Model):
... address = models.TextField()
... person = models.ForeignKey(Person)
... class Meta:
... app_label = 'demo'
...

上面的代码声明了2个Python 类,Person 和 Address,每一个都映射到数据库表。在执行任意数据库操作代码之前,我们需要先在本地的sqlite数据库创建表。

python manage.py syncdb
Creating tables ...
Creating table demo_person
Creating table demo_address
Installing custom SQL ...
Installing indexes ...
Installed 0 object(s) from 0 fixture(s)

为了插入一个 person 和一个 address 到数据库,我们实例化相应对象并调用这些对象的save() 方法。

>>> from demo.models import Person, Address
>>> p = Person(name='person')
>>> p.save()
>>> print "%r, %r" % (p.id, p.name)
1, 'person'
>>> a = Address(person=p, address='address')
>>> a.save()
>>> print "%r, %r" % (a.id, a.address)
1, 'address'

为了获得或检索 person 和 address 对象, 我们用model类神奇的对象属性从数据库取得对象。

>>> persons = Person.objects.filter(name='person')
>>> persons
[]
>>> p = persons[0]
>>> print "%r, %r" % (p.id, p.name)
1, u'person'
>>> addresses = Address.objects.filter(person=p)
>>> addresses
[

<address>]
>>> a = addresses[0]
>>> print "%r, %r" % (a.id, a.address)
1, u'address'

peewee

peewee 是一个小的,表达式的 ORM。相比其他的 ORM,peewee 主要专注于极简主义,其API简单,并且其库容易使用和理解。

pip install peewee
Downloading/unpacking peewee
Downloading peewee-2.1.7.tar.gz (1.1MB): 1.1MB downloaded
Running setup.py egg_info for package peewee

Installing collected packages: peewee
Running setup.py install for peewee
changing mode of build/scripts-2.7/pwiz.py from 644 to 755

changing mode of /Users/xiaonuogantan/python2-workspace/bin/pwiz.py to 755
Successfully installed peewee
Cleaning up...

为了创建数据库模型映射,我们实现了一个Person 类 和一个Address类 来映射对应的数据库表。

>>> from peewee import SqliteDatabase, CharField, ForeignKeyField, Model
>>>
>>> db = SqliteDatabase(':memory:')
>>>
>>> class Person(Model):
... name = CharField()
... class Meta:
... database = db
...
>>>
>>> class Address(Model):
... address = CharField()
... person = ForeignKeyField(Person)
... class Meta:
... database = db
...
>>> Person.create_table()
>>> Address.create_table()

为了插入对象到数据库,我们实例化对象并调用了它们的save() 方法。从视图的对象创建这点来看,peewee类似于Django。

>>> p = Person(name='person')
>>> p.save()
>>> a = Address(address='address', person=p)
>>> a.save()

为了从数据库获得或检索对象, 我们select 了类各自的对象。

>>> person = Person.select().where(Person.name == 'person').get()
>>> person

>>> print '%r, %r' % (person.id, person.name)
1, u'person'
>>> address = Address.select().where(Address.person == person).get()
>>> print '%r, %r' % (address.id, address.address)
1, u'address'

SQLAlchemy

SQLAlchemy 是Python编程语言里,一个在MIT许可下发布的开源工具和SQL ORM。它首次发布于2006年二月,由Michael Bayer写的。它提供了 “一个知名企业级的持久化模式的,专为高效率和高性能的数据库访问设计的,改编成一个简单的Python域语言的完整套件”。它采用了数据映射模式(像Java中的Hibernate)而不是Active Record模式(像Ruby on Rails的ORM)。

SQLAlchemy 的工作单元 主要使得 有必要限制所有的数据库操作代码到一个特定的数据库session,在该session中控制每个对象的生命周期 。类似于其他的ORM,我们开始于定义declarative_base()的子类,以映射表到Python类。

>>> from sqlalchemy import Column, String, Integer, ForeignKey
>>> from sqlalchemy.orm import relationship
>>> from sqlalchemy.ext.declarative import declarative_base
>>>
>>>
>>> Base = declarative_base()
>>>
>>>
>>> class Person(Base):
... __tablename__ = 'person'
... id = Column(Integer, primary_key=True)
... name = Column(String)
...
>>>
>>> class Address(Base):
... __tablename__ = 'address'
... id = Column(Integer, primary_key=True)
... address = Column(String)
... person_id = Column(Integer, ForeignKey(Person.id))
... person = relationship(Person)
...

在我们写任何数据库代码前,我们需要为数据库session创建一个数据库引擎。

>>> from sqlalchemy import create_engine
>>> engine = create_engine('sqlite:///')

一当我们创建了数据库引擎,可以继续创建一个数据库会话,并为所有之前定义的 Person和Address 类创建数据库表。

>>> from sqlalchemy.orm import sessionmaker
>>> session = sessionmaker()
>>> session.configure(bind=engine)
>>> Base.metadata.create_all(engine)

现在,session 对象对象变成了我们工作单元的构造函数,将和所有后续数据库操作代码和对象关联到一个通过调用它的 __init__() 方法构建的数据库session上。

>>> s = session()
>>> p = Person(name='person')
>>> s.add(p)
>>> a = Address(address='address', person=p)
>>> s.add(a)

为了获得或检索数据库中的对象,我们在数据库session对象上调用 query() 和 filter() 方法。

>>> p = s.query(Person).filter(Person.name == 'person').one()
>>> p

>>> print "%r, %r" % (p.id, p.name)
1, 'person'
>>> a = s.query(Address).filter(Address.person == p).one()
>>> print "%r, %r" % (a.id, a.address)
1, 'address'

请留意到目前为止,我们还没有提交任何对数据库的更改,所以新的person和address对象实际上还没存储在数据库中。 调用 s.commit() 将会提交更改,比如,插入一个新的person和一个新的address到数据库中。

>>> s.commit()
>>> s.close()

Python ORM 之间对比

对于在文章里提到的每一种 Python ORM ,我们来列一下他们的优缺点:
SQLObject

优点:

  • 采用了易懂的ActiveRecord 模式
  • 一个相对较小的代码库

缺点:

  • 方法和类的命名遵循了Java 的小驼峰风格
  • 不支持数据库session隔离工作单元

Storm

优点:

  • 清爽轻量的API,短学习曲线和长期可维护性
  • 不需要特殊的类构造函数,也没有必要的基类

缺点:

  • 迫使程序员手工写表格创建的DDL语句,而不是从模型类自动派生
  • Storm的贡献者必须把他们的贡献的版权给Canonical公司

Django's ORM

优点:

  • 易用,学习曲线短
  • 和Django紧密集合,用Django时使用约定俗成的方法去操作数据库

缺点:

  • 不好处理复杂的查询,强制开发者回到原生SQL
  • 紧密和Django集成,使得在Django环境外很难使用

peewee

优点:

  • Django式的API,使其易用
  • 轻量实现,很容易和任意web框架集成

缺点:

  • 不支持自动化 schema 迁移
  • 多对多查询写起来不直观

SQLAlchemy

优点:

  • 企业级 API,使得代码有健壮性和适应性
  • 灵活的设计,使得能轻松写复杂查询

缺点:

  • 工作单元概念不常见
  • 重量级 API,导致长学习曲线

总结和提示

相比其他的ORM, SQLAlchemy 意味着,无论你何时写SQLAlchemy代码, 都专注于工作单元的前沿概念 。DB Session 的概念可能最初很难理解和正确使用,但是后来你会欣赏这额外的复杂性,这让意外的时序提交相关的数据库bug减少到0。在SQLAlchemy中处理多数据库是棘手的, 因为每个DB session 都限定了一个数据库连接。但是,这种类型的限制实际上是好事, 因为这样强制你绞尽脑汁去想在多个数据库之间的交互, 从而使得数据库交互代码很容易调试。

在未来的文章中,我们将会完整地披露更高阶的SQLAlchemy用例, 真正领会无限强大的API。

(0)

相关推荐

  • 利用Python的Django框架中的ORM建立查询API

     摘要 在这篇文章里,我将以反模式的角度来直接讨论Django的低级ORM查询方法的使用.作为一种替代方式,我们需要在包含业务逻辑的模型层建立与特定领域相关的查询API,这些在Django中做起来不是非常容易,但通过深入地了解ORM的内容原理,我将告诉你一些简捷的方式来达到这个目的. 概览 当编写Django应用程序时,我们已经习惯通过添加方法到模型里以此达到封装业务逻辑并隐藏实现细节.这种方法看起来是非常的自然,而且实际上它也用在Django的内建应用中. >>> from djang

  • Django ORM框架的定时任务如何使用详解

    前言 大家在Django项目开发过程中,是不是也经常遇到这样的场景:需要实现一个定时任务,但又不想脱离Django环境独立运行,如:还需要使用Django的ORM框架操作Models类.日志框架.复用已有配置/方法等等. 大部分同学,初次接触时首先想到的就是使用第三方插件,如:django-celery,django-crontab等等,我也不例外,但实际使用过程,总有诸多不爽,要么感觉大材小用,要么功能支持不完整,要么使用很繁琐... 多次尝试摸索后,发现Django已经帮我们实现了该功能,使

  • django 常用orm操作详解

    Django流程: 1 创建Django项目 : django-admin startproject projectname 2 创建应用: : python manage.py startapp appname 3 在控制器(urls.py)创建 url 与 视图函数的映射关系(一一对应) 4 创建视图函数,完成逻辑代码 5 从数据库取出集合对象 5 把数据库变量嵌入到模板进行渲染(render方法) 6 将渲染后的html页面返回给客户端 URL:协议+域名+端口+路径 协议:http 域名

  • 在Python的Django框架上部署ORM库的教程

    Python ORM 概览 作为一个美妙的语言,Python 除了 SQLAlchemy外还有很多ORM库.在这篇文章里,我们将来看看几个流行的可选ORM库,以此更好地窥探到Python ORM 境况.通过写一段脚本来读写2个表 ,person 和 address 到一个简单的数据库,我们能更好地理解每个ORM库的优缺点. SQLObject SQLObject 是一个介于SQL数据库和Python之间映射对象的Python ORM.得益于其类似于Ruby on Rails的ActiveReco

  • Windows下Python的Django框架环境部署及应用编写入门

    环境搭建 1.下载所需的软件包: (1)python安装包 (2)django安装包 以下2个包其实是安装python包管理工具,在后面安装django文档包模块时会用到,下载网站是pypi (1)setuptools.exe  (2)pip 2.安装所需的软件包: python安装包是exe,setuptools也是exe,所以直接双击安装即可,先安装 django.pip是python模块包:安装时先解压,而后进入目录后使用命令:python setup.py install 安装即可 3.

  • 详解在Python的Django框架中创建模板库的方法

    不管是写自定义标签还是过滤器,第一件要做的事是创建模板库(Django能够导入的基本结构). 创建一个模板库分两步走: 第一,决定模板库应该放在哪个Django应用下. 如果你通过 manage.py startapp 创建了一个应用,你可以把它放在那里,或者你可以为模板库单独创建一个应用. 我们更推荐使用后者,因为你的filter可能在后来的工程中有用. 无论你采用何种方式,请确保把你的应用添加到 INSTALLED_APPS 中. 我们稍后会解释这一点. 第二,在适当的Django应用包里创

  • 用Python的Django框架完成视频处理任务的教程

    Stickyworld 的网页应用已经支持视频拨放一段时间,但都是通过YouTube的嵌入模式实现.我们开始提供新的版本支持视频操作,可以让我们的用户不用受制于YouTube的服务. 我过去曾经参与过一个项目,客户需要视频转码功能,这实在不是个容易达成的需求.需要大量的读取每一个视频.音讯与视频容器的格式再输出符合网页使用与喜好的视频格式. 考虑到这一点,我们决定将转码的工作交给 Encoding.com .这个网站可以免费让你编码1GB大小的视频,超过1GB容量的文件将采取分级计价收费. 开发

  • 使用Python的Django框架实现事务交易管理的教程

    如果你花费了很多的时间去进行Django数据库事务处理的话,你将会了解到这是让人晕头转向的. 在过去,只是提供了简单的基础文档,要想清楚知道它是怎么使用的,还必须要通过创建和执行Django的事务处理. 这里有众多的Django事务处理的名词,例如:commit_on_success , commit_manually , commit_unless_maneged,rollback_unless_managed,enter_transaction_management,leace_transa

  • Python的Django框架中TEMPLATES项的设置教程

    TEMPLATES Django 1.8的新特性 一个列表,包含所有在Django中使用的模板引擎的设置.列表中的每一项都是一个字典,包含某个引擎的选项. 以下是一个简单的设定,告诉Django模板引擎从已安装的应用程序(installed applications)的templates子目录中读取模板: TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'APP_DIRS': True,

  • Python及Django框架生成二维码的方法分析

    本文实例讲述了Python及Django框架生成二维码的方法.分享给大家供大家参考,具体如下: 一.包的安装和简单使用 1.1 用Python来生成二维码很简单,可以看 qrcode 这个包: pip install qrcode qrcode 依赖 Image 这个包: pip install Image 如果这个包安装有困难,可选纯Python的包来实现此功能,见下文. 1.2 安装后就可以使用了,这个程序带了一个 qr 命令: qr 'http://www.ziqiangxuetang.c

  • Python中Django框架利用url来控制登录的方法

    本文实例讲述了Python中Django框架利用url来控制登录的方法.分享给大家供大家参考.具体如下: from django.conf.urls.defaults import patterns,url #or use login_required from django.contrib.admin.views.decorators import staff_member_required def login_url(regex, view, *p,**args): """

  • python中django框架通过正则搜索页面上email地址的方法

    本文实例讲述了python中django框架通过正则搜索页面上email地址的方法.分享给大家供大家参考.具体实现方法如下: import re from django.shortcuts import render from pattern.web import URL, DOM, abs, find_urls def index(request): """ find email addresses in requested url or contact page &quo

随机推荐