C语言数据结构二叉树简单应用

 C语言数据结构二叉树简单应用

在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree),接下来我就在这里给大家介绍一下二叉树在算法中的简单使用:

我们要完成总共有

(1)二叉树的创建

(2)二叉树的先中后序递归遍历

(3)统计叶子结点的总数

(4)求树的高度

(5)反转二叉树

(6)输出每个叶子结点到根节点的路径

(7)输出根结点到每个叶子结点的路径。

定义二叉树结点类型的结构体

typedef struct node{
  char data;
  struct node *Lchild;
  struct node *Rchild;
}BiTNode,*BiTree;
int cnt=0;//统计叶子节点个数

二叉树的创建

BiTNode *Create(){ //二叉树的先序建立
  char ch;
  BiTNode *s;
  ch=getchar();
  if(ch=='#')erchashu
    return NULL;
  s=(BiTNode *)malloc(sizeof(BiTNode));
  s->data=ch;
  s->Lchild=Create();
  s->Rchild=Create();
  return s;
}

二叉树的先序、中序、后序递归遍历

void PreOrder(BiTree root){   //前序遍历
  if(root){
    printf("%c ",root->data);
    PreOrder(root->Lchild);
    PreOrder(root->Rchild);
  }
} 

void InOrder(BiTree root){   //中序遍历
  if(root){
    InOrder(root->Lchild);
    printf("%c ",root->data);
    InOrder(root->Rchild);
  }
} 

void PostOrder(BiTree root){    //后序遍历
  if(root){
    PostOrder(root->Lchild);
    PostOrder(root->Rchild);
    printf("%c ",root->data);
  }
}

统计叶子结点个数:

void LeafCountNode(BiTree root){  //统计叶子结点个数
  if(root){
    if(!root->Lchild && !root->Rchild)
      cnt++;
    LeafCountNode(root->Lchild);
    LeafCountNode(root->Rchild);
  }
}

输出各个叶子结点值:

void IInOrder(BiTree root){ //输出各个叶子结点值
  if(root){
    IInOrder(root->Lchild);
    if(!root->Lchild && !root->Rchild)
      printf("%c ",root->data);
    IInOrder(root->Rchild);
  }
}

求树的高度:

int PostTreeDepth(BiTree root){       //求树的高度
  int h1,h2,h;
  if(root==NULL){
    return 0;
  }
  else{
    h1=PostTreeDepth(root->Lchild);
    h2=PostTreeDepth(root->Rchild);
    h=(h1>h2?h1:h2)+1;
    return h;
  }
}

反转二叉树:

void MirrorTree(BiTree root){        //二叉树镜像树
  BiTree t;
  if(root==NULL)
    return;
  else{
    t=root->Lchild;
    root->Lchild=root->Rchild;
    root->Rchild=t;
    MirrorTree(root->Lchild);
    MirrorTree(root->Rchild);
  }
}

输出每个叶子结点到根节点的路径:

void OutPutPath(BiTree root,char path[],int len){      //输出每个叶子结点到根节点的路径
  if(root){
    if(!root->Lchild && !root->Rchild){
      printf("%c ",root->data);
      for(int i=len-1;i>=0;i--)
        printf("%c ",path[i]);
      printf("\n");
    }
    path[len]=root->data;
    OutPutPath(root->Lchild,path,len+1);
    OutPutPath(root->Rchild,path,len+1);
  }
}

输出根到每个叶子结点的路径:

void PrintPath(BiTree root,char path[],int l){     //输出根到每个叶子结点的路径
  int len=l-1;
  if(root){
    if(root->Lchild==NULL && root->Rchild==NULL){
      path[len]=root->data;
      for(int i=9;i>=len;i--)
        printf("%c ",path[i]);
      printf("\n");
    }
    path[len]=root->data;
    PrintPath(root->Lchild,path,len);
    PrintPath(root->Rchild,path,len);
  }
}

测试代码:

int main(void){
  int h,len;
  char path[20];
  BiTree root;
  root=Create();
// PreOrder(root);
// printf("\n");
// InOrder(root);
// printf("\n");
// PostOrder(root);
// printf("\n");
// LeafCountNode(root);
// printf("叶子结点个数为:%d\n",cnt);
// IInOrder(root);
  h=PostTreeDepth(root);
  printf("树的高度为:High=%d\n",h);
// PrintTree(root,0);
// MirrorTree(root);
// PrintTree(root,0);
// OutPutPath(root,path,0);
// PrintPath(root,path,10);
  return 0;
}

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

(0)

相关推荐

  • 举例讲解C语言程序中对二叉树数据结构的各种遍历方式

    二叉树遍历的基本思想 二叉树的遍历本质上其实就是入栈出栈的问题,递归算法简单且容易理解,但是效率始终是个问题.非递归算法可以清楚的知道每步实现的细节,但是乍一看不想递归算法那么好理解,各有各的好处吧.接下来根据下图讲讲树的遍历. 1.先序遍历:先序遍历是先输出根节点,再输出左子树,最后输出右子树.上图的先序遍历结果就是:ABCDEF 2.中序遍历:中序遍历是先输出左子树,再输出根节点,最后输出右子树.上图的中序遍历结果就是:CBDAEF 3.后序遍历:后序遍历是先输出左子树,再输出右子树,最后输

  • C语言实现线索二叉树的定义与遍历示例

    本文实例讲述了C语言实现线索二叉树的定义与遍历.分享给大家供大家参考,具体如下: #include <stdio.h> #include <malloc.h> typedef char TElemType; // 二叉树的二叉线索存储表示 typedef enum{ Link, Thread }PointerTag; // Link(0):指针,Thread(1):线索 typedef struct BiThrNode { TElemType data; struct BiThrN

  • 使用C语言构建基本的二叉树数据结构

    二叉树结构常用的一些初始化代码 #include #include typedef struct Node{ int data; Node *leftchild; Node *rightchild; }Node; /* 初始化一棵二叉树排序树. */ void InitBinaryTree(Node**root,int elem) { *root=(Node*)malloc(sizeof(Node)); if(!(*root)) { printf("Memory allocation for r

  • C语言中计算二叉树的宽度的两种方式

    C语言中计算二叉树的宽度的两种方式 二叉树作为一种很特殊的数据结构,功能上有很大的作用!今天就来看看怎么计算一个二叉树的最大的宽度吧. 采用递归方式 下面是代码内容: int GetMaxWidth(BinaryTree pointer){ int width[10];//加入这棵树的最大高度不超过10 int maxWidth=0; int floor=1; if(pointer){ if(floor==1){//如果访问的是根节点的话,第一层节点++; width[floor]++; flo

  • c语言版本二叉树基本操作示例(先序 递归 非递归)

    复制代码 代码如下: 请按先序遍历输入二叉树元素(每个结点一个字符,空结点为'='):ABD==E==CF==G== 先序递归遍历:A B D E C F G中序递归遍历:D B E A F C G后序递归遍历:D E B F G C A层序递归遍历:ABCDEFG先序非递归遍历:A B D E C F G中序非递归遍历:D B E A F C G后序非递归遍历:D E B F G C A深度:请按任意键继续. . . 复制代码 代码如下: #include<stdio.h>#include&

  • C语言实现二叉树的搜索及相关算法示例

    本文实例讲述了C语言实现二叉树的搜索及相关算法.分享给大家供大家参考,具体如下: 二叉树(二叉查找树)是这样一类的树,父节点的左边孩子的key都小于它,右边孩子的key都大于它. 二叉树在查找和存储中通常能保持logn的查找.插入.删除,以及前驱.后继,最大值,最小值复杂度,并且不占用额外的空间. 这里演示二叉树的搜索及相关算法: #include<stack> #include<queue> using namespace std; class tree_node{ public

  • C语言 数据结构平衡二叉树实例详解

    数据结构平衡二叉树 参考代码如下: /* 名称:平衡二叉树 语言:数据结构C语言版 编译环境:VC++ 6.0 日期: 2014-3-26 */ #include <stdio.h> #include <malloc.h> #include <windows.h> #define LH +1 // 左高 #define EH 0 // 等高 #define RH -1 // 右高 #define N 5 // 数据元素个数 typedef char KeyType; /

  • C语言 二叉树的链式存储实例

    二叉树的链式存储 实现二叉树的基本操作:建立.遍历.计算深度.结点数.叶子数等. 输入C,先序创建二叉树,#表示空节点: 输入H:计算二叉树的高度: 输入L:计算二叉树的叶子个数: 输入N:计算二叉树节点总个数: 输入1:先序遍历二叉树: 输入2:中序遍历二叉树: 输入3:后续遍历二叉树: 输入F:查找值=x的节点的个数: 输入P:以缩格文本形式输出所有节点. 很简单就不需要多解释了,代码贴上 #include <stdio.h> #include <stdlib.h> #incl

  • C语言数据结构二叉树简单应用

     C语言数据结构二叉树简单应用 在计算机科学中,二叉树是每个节点最多有两个子树的树结构.通常子树被称作"左子树"(left subtree)和"右子树"(right subtree),接下来我就在这里给大家介绍一下二叉树在算法中的简单使用: 我们要完成总共有 (1)二叉树的创建 (2)二叉树的先中后序递归遍历 (3)统计叶子结点的总数 (4)求树的高度 (5)反转二叉树 (6)输出每个叶子结点到根节点的路径 (7)输出根结点到每个叶子结点的路径. 定义二叉树结点类型

  • C语言数据结构二叉树之堆的实现和堆排序详解

    目录 一.本章重点 二.堆 2.1堆的介绍 2.2堆的接口实现 三.堆排序 一.本章重点 堆的介绍 堆的接口实现 堆排序 二.堆 2.1堆的介绍 一般来说,堆在物理结构上是连续的数组结构,在逻辑结构上是一颗完全二叉树. 但要满足 每个父亲节点的值都得大于孩子节点的值,这样的堆称为大堆. 每个父亲节点的值都得小于孩子节点的值,这样的堆称为小堆. 那么以下就是一个小堆. 百度百科: 堆的定义如下:n个元素的序列{k1,k2,ki,…,kn}当且仅当满足下关系时,称之为堆. 若将和此次序列对应的一维数

  • C语言数据结构二叉树先序、中序、后序及层次四种遍历

    目录 一.图示展示 (1)先序遍历 (2)中序遍历 (3)后序遍历 (4)层次遍历 (5)口诀 二.代码展示 一.图示展示 (1)先序遍历 先序遍历可以想象为,一个小人从一棵二叉树根节点为起点,沿着二叉树外沿,逆时针走一圈回到根节点,路上遇到的元素顺序,就是先序遍历的结果 先序遍历结果为:A B D H I E J C F K G 动画演示: 记住小人沿着外围跑一圈(直到跑回根节点),多看几次动图便能理解 (2)中序遍历 中序遍历可以看成,二叉树每个节点,垂直方向投影下来(可以理解为每个节点从最

  • C语言 数据结构双向链表简单实例

    双向链表的基本操作 1.利用尾插法建立一个双向链表. 2.遍历双向链表. 3.实现双向链表中删除一个指定元素. 4.在非递减有序双向链表中实现插入元素e仍有序算法. 5.判断双向链表中元素是否对称若对称返回1否则返回0. 6.设元素为正整型,实现算法把所有奇数排列在偶数之前. 7.在主函数中设计一个简单的菜单调试上述算法. 实例代码: //排序的时候因为没有说明奇数和偶数需不需要各自再排序,我就没有排序,只是将奇数放在偶数后面. //创建链表的时候,因为这个实验没有要求输出链表的长度,所以我就输

  • C语言数据结构之平衡二叉树(AVL树)实现方法示例

    本文实例讲述了C语言数据结构之平衡二叉树(AVL树)实现方法.分享给大家供大家参考,具体如下: AVL树是每个结点的左子树和右子树的高度最多差1的二叉查找树. 要维持这个树,必须在插入和删除的时候都检测是否出现破坏树结构的情况.然后立刻进行调整. 看了好久,网上各种各种的AVL树,千奇百怪. 关键是要理解插入的时候旋转的概念. // // AvlTree.h // HelloWorld // Created by feiyin001 on 17/1/9. // Copyright (c) 201

  • C语言数据结构系列篇二叉树的遍历

    目录 前言: Ⅰ. 定义二叉树 0x00二叉树的概念(回顾) 0x00定义二叉树 0x01 手动创建二叉树 Ⅱ. 二叉树的遍历 0x00关于遍历 0x01二叉树前序遍历 0x02二叉树中序遍历 0x03二叉树后序遍历 0x04层序遍历 前言: 学习二叉树的基本操作前,需要先创建一颗二叉树,然后才能学习其相关的基本操作,考虑到我们刚刚接触二叉树,为了能够先易后难地进行讲解,我们将暂时手动创建一颗简单的二叉树,用来方便大家学习.等二叉树结构了解的差不多后,后期我们会带大家研究二叉树地真正的创建方式.

  • C语言数据结构之二叉树详解

    目录 1. 树概念及结构 1.1树概念 1.2树的表示 2. 二叉树概念及结构 2.1概念 2.2数据结构中的二叉树 2.3特殊的二叉树 2.4二叉树的存储结构 2.5二叉树的性质 3. 二叉树顺序结构及概念 3.1二叉树的顺序结构 3.2堆的概念及结构 3.3堆的实现 4. 二叉树链式结构及实现 4.1二叉树链式结构的遍历 4.2二叉树的链式实现 1. 树概念及结构 1.1树概念 树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合.把它叫做树是因为它看起来像一棵

  • C语言数据结构详细解析二叉树的操作

    目录 二叉树分类 二叉树性质 性质的使用 二叉树的遍历 前序遍历 中序遍历 后序遍历 层序遍历 求二叉树的节点数 求二叉树叶子结点个数 求二叉树的最大深度 二叉树的销毁 二叉树分类 满二叉树 除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树.也可以理解为每一层的结点数都达到最大值的二叉树. 完全二叉树 一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下.从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为

  • C语言植物大战数据结构二叉树递归

    目录 前言 一.二叉树的遍历算法 1.构造二叉树 2.前序遍历(递归图是重点.) 3.中序遍历 4.后序遍历 二.二叉树遍历算法的应用 1.求节点个数 3.求第k层节点个数 4.查找值为x的节点 5.二叉树销毁 6.前序遍历构建二叉树 7.判断二叉树是否是完全二叉树 8.求二叉树的深度 三.二叉树LeetCode题目 1.单值二叉树 2. 检查两颗树是否相同 3. 对称二叉树 4.另一颗树的子树 6.反转二叉树 " 梧桐更兼细雨,到黄昏.点点滴滴." C语言朱武大战数据结构专栏 C语言

  • C语言数据结构之二叉树的非递归后序遍历算法

    C语言数据结构之二叉树的非递归后序遍历算法 前言: 前序.中序.后序的非递归遍历中,要数后序最为麻烦,如果只在栈中保留指向结点的指针,那是不够的,必须有一些额外的信息存放在栈中. 方法有很多,这里只举一种,先定义栈结点的数据结构 typedef struct{Node * p; int rvisited;}SNode //Node 是二叉树的结点结构,rvisited==1代表p所指向的结点的右结点已被访问过. lastOrderTraverse(BiTree bt){ //首先,从根节点开始,

随机推荐