将MongoDB作为Redis式的内存数据库的使用方法

 基本思想

将MongoDB用作内存数据库(in-memory database),也即,根本就不让MongoDB把数据保存到磁盘中的这种用法,引起了越来越多的人的兴趣。这种用法对于以下应用场合来讲,超实用:

  • 置于慢速RDBMS系统之前的写操作密集型高速缓存
  • 嵌入式系统
  • 无需持久化数据的PCI兼容系统
  • 需要轻量级数据库而且库中数据可以很容易清除掉的单元测试(unit testing)

如果这一切可以实现就真是太优雅了:我们就能够巧妙地在不涉及磁盘操作的情况下利用MongoDB的查询/检索功能。可能你也知道,在99%的情况下,磁盘IO(特别是随机IO)是系统的瓶颈,而且,如果你要写入数据的话,磁盘操作是无法避免的。

MongoDB有一个非常酷的设计决策,就是她可以使用内存影射文件(memory-mapped file)来处理对磁盘文件中数据的读写请求。这也就是说,MongoDB并不对RAM和磁盘这两者进行区别对待,只是将文件看作一个巨大的数组,然后按照字节为单位访问其中的数据,剩下的都交由操作系统(OS)去处理!就是这个设计决策,才使得MongoDB可以无需任何修改就能够运行于RAM之中。

实现方法

这一切都是通过使用一种叫做tmpfs的特殊类型文件系统实现的。在Linux中它看上去同常规的文件系统(FS)一样,只是它完全位于RAM中(除非其大小超过了RAM的大小,此时它还可以进行swap,这个非常有用!)。我的服务器中有32GB的RAM,下面让我们创建一个16GB的 tmpfs:

代码如下:

# mkdir /ramdata
# mount -t tmpfs -o size=16000M tmpfs /ramdata/
# df
Filesystem           1K-blocks      Used Available Use% Mounted on
/dev/xvde1             5905712   4973924    871792  86% /
none                  15344936         0  15344936   0% /dev/shm
tmpfs                 16384000         0  16384000   0% /ramdata

接下来要用适当的设置启动MongoDB。为了减小浪费的RAM数量,应该把smallfiles和noprealloc设置为true。既然现在是基于RAM的,这么做完全不会降低性能。此时再使用journal就毫无意义了,所以应该把nojournal设置为true。

代码如下:

dbpath=/ramdata
nojournal = true
smallFiles = true
noprealloc = true

MongoDB启动之后,你会发现她运行得非常好,文件系统中的文件也正如期待的那样出现了:

代码如下:

# mongo
MongoDB shell version: 2.3.2
connecting to: test
> db.test.insert({a:1})
> db.test.find()
{ "_id" : ObjectId("51802115eafa5d80b5d2c145"), "a" : 1 }

# ls -l /ramdata/
total 65684
-rw-------. 1 root root 16777216 Apr 30 15:52 local.0
-rw-------. 1 root root 16777216 Apr 30 15:52 local.ns
-rwxr-xr-x. 1 root root        5 Apr 30 15:52 mongod.lock
-rw-------. 1 root root 16777216 Apr 30 15:52 test.0
-rw-------. 1 root root 16777216 Apr 30 15:52 test.ns
drwxr-xr-x. 2 root root       40 Apr 30 15:52 _tmp

现在让我们添加一些数据,证实一下其运行完全正常。我们先创建一个1KB的document,然后将它添加到MongoDB中4百万次:

代码如下:

> str = ""

> aaa = "aaaaaaaaaa"
aaaaaaaaaa
> for (var i = 0; i < 100; ++i) { str += aaa; }

> for (var i = 0; i < 4000000; ++i) { db.foo.insert({a: Math.random(), s: str});}
> db.foo.stats()
{
        "ns" : "test.foo",
        "count" : 4000000,
        "size" : 4544000160,
        "avgObjSize" : 1136.00004,
        "storageSize" : 5030768544,
        "numExtents" : 26,
        "nindexes" : 1,
        "lastExtentSize" : 536600560,
        "paddingFactor" : 1,
        "systemFlags" : 1,
        "userFlags" : 0,
        "totalIndexSize" : 129794000,
        "indexSizes" : {
                "_id_" : 129794000
        },
        "ok" : 1
}

可以看出,其中的document平均大小为1136字节,数据总共占用了5GB的空间。_id之上的索引大小为130MB。现在我们需要验证一件 非常重要的事情:RAM中的数据有没有重复,是不是在MongoDB和文件系统中各保存了一份?还记得MongoDB并不会在她自己的进程内缓存任何数据,她的数据只会缓存到文件系统的缓存之中。那我们来清除一下文件系统的缓存,然后看看RAM中还有有什么数据:

代码如下:

# echo 3 > /proc/sys/vm/drop_caches
# free
             total       used       free     shared    buffers     cached
Mem:      30689876    6292780   24397096          0       1044    5817368
-/+ buffers/cache:     474368   30215508
Swap:            0          0          0

可以看到,在已使用的6.3GB的RAM中,有5.8GB用于了文件系统的缓存(缓冲区,buffer)。为什么即使在清除所有缓存之后,系统中仍然还有5.8GB的文件系统缓存??其原因是,Linux非常聪明,她不会在tmpfs和缓存中保存重复的数据。太棒了!这就意味着,你在RAM只有一份数据。下面我们访问一下所有的document,并验证一下,RAM的使用情况不会发生变化:

代码如下:

> db.foo.find().itcount()
4000000

# free
             total       used       free     shared    buffers     cached
Mem:      30689876    6327988   24361888          0       1324    5818012
-/+ buffers/cache:     508652   30181224
Swap:            0          0          0
# ls -l /ramdata/
total 5808780
-rw-------. 1 root root  16777216 Apr 30 15:52 local.0
-rw-------. 1 root root  16777216 Apr 30 15:52 local.ns
-rwxr-xr-x. 1 root root         5 Apr 30 15:52 mongod.lock
-rw-------. 1 root root  16777216 Apr 30 16:00 test.0
-rw-------. 1 root root  33554432 Apr 30 16:00 test.1
-rw-------. 1 root root 536608768 Apr 30 16:02 test.10
-rw-------. 1 root root 536608768 Apr 30 16:03 test.11
-rw-------. 1 root root 536608768 Apr 30 16:03 test.12
-rw-------. 1 root root 536608768 Apr 30 16:04 test.13
-rw-------. 1 root root 536608768 Apr 30 16:04 test.14
-rw-------. 1 root root  67108864 Apr 30 16:00 test.2
-rw-------. 1 root root 134217728 Apr 30 16:00 test.3
-rw-------. 1 root root 268435456 Apr 30 16:00 test.4
-rw-------. 1 root root 536608768 Apr 30 16:01 test.5
-rw-------. 1 root root 536608768 Apr 30 16:01 test.6
-rw-------. 1 root root 536608768 Apr 30 16:04 test.7
-rw-------. 1 root root 536608768 Apr 30 16:03 test.8
-rw-------. 1 root root 536608768 Apr 30 16:02 test.9
-rw-------. 1 root root  16777216 Apr 30 15:52 test.ns
drwxr-xr-x. 2 root root        40 Apr 30 16:04 _tmp
# df
Filesystem           1K-blocks      Used Available Use% Mounted on
/dev/xvde1             5905712   4973960    871756  86% /
none                  15344936         0  15344936   0% /dev/shm
tmpfs                 16384000   5808780  10575220  36% /ramdata

果不其然! :)

复制(replication)呢?

既然服务器在重启时RAM中的数据都会丢失,所以你可能会想使用复制。采用标准的副本集(replica set)就能够获得自动故障转移(failover),还能够提高数据读取能力(read capacity)。如果有服务器重启了,它就可以从同一个副本集中另外一个服务器中读取数据从而重建自己的数据(重新同步,resync)。即使在大量数据和索引的情况下,这个过程也会足够快,因为索引操作都是在RAM中进行的 :)

有一点很重要,就是写操作会写入一个特殊的叫做oplog的collection,它位于local数据库之中。缺省情况下,它的大小是总数据量的5%。在我这种情况下,oplog会占有16GB的5%,也就是800MB的空间。在拿不准的情况下,比较安全的做法是,可以使用oplogSize这个选项为oplog选择一个固定的大小。如果备选服务器宕机时间超过了oplog的容量,它就必须要进行重新同步了。要把它的大小设置为1GB,可以这样:

代码如下:

oplogSize = 1000

分片(sharding)呢?

既然拥有了MongoDB所有的查询功能,那么用它来实现一个大型的服务要怎么弄?你可以随心所欲地使用分片来实现一个大型可扩展的内存数据库。配置服务器(保存着数据块分配情况)还还是用过采用基于磁盘的方案,因为这些服务器的活动数量不大,老从头重建集群可不好玩。
注意事项

RAM属稀缺资源,而且在这种情况下你一定想让整个数据集都能放到RAM中。尽管tmpfs具有借助于磁盘交换(swapping)的能力,但其性能下降将非常显著。为了充分利用RAM,你应该考虑:

  • 使用usePowerOf2Sizes选项对存储bucket进行规范化
  • 定期运行compact命令或者对节点进行重新同步(resync)
  • schema的设计要相当规范化(以避免出现大量比较大的document)

结论

宝贝,你现在就能够将MongoDB用作内存数据库了,而且还能使用她的所有功能!性能嘛,应该会相当惊人:我在单线程/核的情况下进行测试,可以达到每秒20K个写入的速度,而且增加多少个核就会再增加多少倍的写入速度。

(0)

相关推荐

  • 浅谈redis采用不同内存分配器tcmalloc和jemalloc

    我们知道Redis并没有自己实现内存池,没有在标准的系统内存分配器上再加上自己的东西.所以系统内存分配器的性能及碎片率会对Redis造成一些性能上的影响. 在Redis的 zmalloc.c 源码中,我们可以看到如下代码: /* Double expansion needed for stringification of macro values. */ #define __xstr(s) __str(s) #define __str(s) #s #if defined(USE_TCMALLOC

  • 降低PHP Redis内存占用

    1.降低redis内存占用的优点 1.有助于减少创建快照和加载快照所用的时间 2.提升载入AOF文件和重写AOF文件时的效率 3.缩短从服务器进行同步所需的时间 4.无需添加额外的硬件就可以让redis存贮更多的数据 2.短结构 Redis为列表.集合.散列.有序集合提供了一组配置选项,这些选项可以让redis以更节约的方式存储较短的结构. 2.1.ziplist压缩列表(列表.散列.有续集和) 通常情况下使用的存储方式 当列表.散列.有序集合的长度较短或者体积较小的时候,redis将会采用一种

  • redis数据库查找key在内存中的位置的方法

    一.预先需要了解的知识1.redis 中的每一个数据库,都由一个 redisDb 的结构存储.其中,redisDb.id 存储着 redis 数据库以整数表示的号码.redisDb.dict 存储着该库所有的键值对数据.redisDb.expires 保存着每一个键的过期时间.2.当redis 服务器初始化时,会预先分配 16 个数据库(该数量可以通过配置文件配置),所有数据库保存到结构 redisServer 的一个成员 redisServer.db 数组中.当我们选择数据库 select n

  • Redis教程(十一):虚拟内存介绍

    一.简介: 和大多NoSQL数据库一样,Redis同样遵循了Key/Value数据存储模型.在有些情况下,Redis会将Keys/Values保存在内存中以提高数据查询和数据修改的效率,然而这样的做法并非总是很好的选择.鉴于此,我们可以将之进一步优化,即尽量在内存中只保留Keys的数据,这样可以保证数据检索的效率,而Values数据在很少使用的时候则可以被换出到磁盘.     在实际的应用中,大约只有10%的Keys属于相对比较常用的键,这样Redis就可以通过虚存将其余不常用的Keys和Val

  • Redis教程(十四):内存优化介绍

    一.特殊编码: 自从Redis 2.2之后,很多数据类型都可以通过特殊编码的方式来进行存储空间的优化.其中,Hash.List和由Integer组成的Sets都可以通过该方式来优化存储结构,以便占用更少的空间,在有些情况下,可以省去9/10的空间.     这些特殊编码对于Redis的使用而言是完全透明的,事实上,它只是CPU和内存之间的一个交易而言.如果内存使用率方面高一些,那么在操作数据时消耗的CPU自然要多一些,反之亦然.在Redis中提供了一组配置参数用于设置与特殊编码相关的各种阈值,如

  • 将MongoDB作为Redis式的内存数据库的使用方法

     基本思想 将MongoDB用作内存数据库(in-memory database),也即,根本就不让MongoDB把数据保存到磁盘中的这种用法,引起了越来越多的人的兴趣.这种用法对于以下应用场合来讲,超实用: 置于慢速RDBMS系统之前的写操作密集型高速缓存 嵌入式系统 无需持久化数据的PCI兼容系统 需要轻量级数据库而且库中数据可以很容易清除掉的单元测试(unit testing) 如果这一切可以实现就真是太优雅了:我们就能够巧妙地在不涉及磁盘操作的情况下利用MongoDB的查询/检索功能.可

  • python连接MySQL、MongoDB、Redis、memcache等数据库的方法

    用Python写脚本也有一段时间了,经常操作数据库(MySQL),现在就整理下对各类数据库的操作,如后面有新的参数会补进来,慢慢完善. 一,python 操作 MySQL:详情见:[apt-get install python-mysqldb] 复制代码 代码如下: #!/bin/env python# -*- encoding: utf-8 -*-#-------------------------------------------------------------------------

  • 开源 5 款超好用的数据库 GUI 带你玩转 MongoDB、Redis、SQL 数据库(推荐)

    工欲善其事必先利其器,想要玩溜数据库,不妨去试试本文安利的 5 款开源的数据库管理工具.除了流行的 SQL 类数据库--MySQL.PostgreSQL 之外,文档型数据库 MongoDB.内存数据库 Redis 的管理工具也在列表之中. MongoDB 图形化的管理工具:Mongood GitHub Star 数 :222 Mongood 是一个 MongoDB 图形化的管理工具.

  • Linux系统安装NoSQL(MongoDB和Redis)步骤及问题解决办法(总结篇)

    如下是我工作中的记录,介绍的是linux系统下NoSQL:MongoDB和Redis的安装过程和遇到的问题以及解决办法: 需要的朋友可以按照如下步骤进行安装,可以快速安装MongoDB和Redis,希望可以帮助大家:)! 一.MongoDB 1.MongoDB安装 (1)将安装包mongodb-linux-i686-3.0.2.tgz拷贝到要安装的服务器中 这里我用的rz命令,如果不支持需要安装yum -y install lrzsz (2)解压安装程序 tar xzvf mongodb-lin

  • 通过Docker部署Redis 6.x集群的方法

    系统环境: Redis 版本:6.0.8 Docker 版本:19.03.12 系统版本:CoreOS 7.8 内核版本:5.8.5-1.el7.elrepo.x86_64 一.什么是 Redis 集群模式 在 Redis 3.0 版本后正式推出 Redis 集群模式,该模式是 Redis 的分布式的解决方案,是一个提供在多个 Redis 节点间共享数据的程序集,且 Redis 集群是去中心化的,它的每个 Master 节点都可以进行读写数据,每个节点都拥有平等的关系,每个节点都保持各自的数据和

  • redis中Hash字典操作的方法

    目录 1.Redis操作之Hash操作 redis hash字典操作 1.Redis操作之Hash操作 redis支持五大数据类型,只支持第一层,也就说字典的value值,必须是字符串 如果value值想存字典,必须用json转换一下,转成字符串 redis hash字典操作 reids:{ k1:'dafdadfasf', m1:{ 'key2':value2, 'key1':value1, } } 1.hset(name, key, value),插入值 # name对应的hash中设置一个

  • redis实现加锁的几种方法示例详解

    前言 本文主要给大家介绍了关于redis实现加锁的几种方法,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 1. redis加锁分类 redis能用的的加锁命令分表是INCR.SETNX.SET 2. 第一种锁命令INCR 这种加锁的思路是, key 不存在,那么 key 的值会先被初始化为 0 ,然后再执行 INCR 操作进行加一. 然后其它用户在执行 INCR 操作进行加一时,如果返回的数大于 1 ,说明这个锁正在被使用当中. 1. 客户端A请求服务器获取key的值为1表示

  • MongoDB在Windows平台的安装及配置方法

    本文实例讲述了MongoDB在Windows平台的安装及配置方法.分享给大家供大家参考,具体如下: 第一步 下载MongoDB http://www.mongodb.org/downloads 第二步 解压到D:\mongodb\目录下,为了命令行的方便,可以把D:\mongodb\bin加到系统环境变量的path中了. 第三步 创建D:\mongodb\data\db以及D:\mongodb\logs\mongodb.log 第四步 启动MongoDB 命令提示符中  D:\mongodb\b

  • PHP使用Redis替代文件存储Session的方法

    本文实例讲述了PHP使用Redis替代文件存储Session的方法.分享给大家供大家参考,具体如下: PHP默认使用文件存储session,如果并发量大,效率非常低.而Redis对高并发的支持非常好,所以,可以使用redis替代文件存储session. 这里,介绍下php的session_set_save_handler 函数的作用和使用方法.该函数定义用户级session保存函数(如打开.关闭.写入等). 原型如下: bool session_set_save_hanler(callback

  • JQuery Mobile 弹出式登录框的实现方法

    <a href="#login" data-rel="popup" data-position-to="window" data-role="button">Login</a> <div data-role="popup" id="login" data-theme="a"> <form style="padding

随机推荐