Python3使用tesserocr识别字母数字验证码的实现

一、背景

最近有个需求是从一个后台的留言网站爬取留言数据,后台管理网站必然涉及到了登录,登录就有个验证码的问题必须得解决,由于验证码是从后端生成的,并且不了解其生成规则,那就只能通过图像识别技术来做验证码识别了!通过查阅资料发现Python中的的tesserocr这个库好像使用的比较多,所以对这个库进行了一番研究,并且实现了那个后台网站验证码的识别。

二、准备工作

1. 安装tesserocr

由于我使用的Python版本是python3.5,所以一下所有操作都是基于python3的,如果有python2的同学,可以找找其他教程~~

首先需要下载tesseract,它为tesserocr提供底层支持。具体下载官方路径:https://github.com/UB-Mannheim/tesseract/wiki,选择对应的系统版本,可以选择一个相对不带dev的稳定版本下载,如:tesseract-ocr-setup-3.05.02-20180621.exe。然后一路安装,唯一记得勾选Additional language data(download),勾选可能会用到的语言tessdata,如简体、繁体中文,数学模块等,不需要全选,下载tessdata的时间会比较长。

然后安装python3对应的tesserocr库,通常我们安装库的方法是使用命令pip install tesserocr,但是这里会报错:“error: Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual C++ Build Tools",这个时候不宜直接去下载Microsoft Visual C++ Build Tools,而是使用原始的whl文件方式安装。tesserocr 的whl官方文件下载路径:https://github.com/simonflueckiger/tesserocr-windows_build/releases,下载本地环境对应的whl文件,如我的是window64位系统,python版本是3.5。下载完后,使用cd跳转到whl文件所在目录,然后 执行 ”pip installtesserocr-2.2.2-cp35-cp35m-win_amd64.whl“,即可轻松完成安装。

紧接着用例子验证如何使用:我们找到一个验证码图片:image.jpg,下载到本地磁盘,用代码进行验证:

import tesserocr
from PIL import Image
image=Image.open('image.jpg')
print(tesserocr.image_to_text(image))

不出意外,首次运行总是不顺利,相信我遇到的坑大多数人都会遇到,大抵错误类似:

Traceback (most recent call last):
File "G:\pythonSources\my12306/obtain_message\test.py", line 4, in <module>
print(tesserocr.image_to_text(image))
File "tesserocr.pyx", line 2400, in tesserocr._tesserocr.image_to_text
RuntimeError: Failed to init API, possibly an invalid tessdata path: “本地某个路径”

有个比较简单粗暴的解决方法是把安装好的Tesseract-OCR下的tessdata文件夹整个拷贝到提示的那个路径中,亲测有效。

2. 安装opencv

由于验证码需要做一些优化处理,方便更加容易被tesserocr识别,所以需要使用opencv来做一些特殊的处理,安装opencv比较简单,直接pip install opencv-python即可。

三、识别过程

1. 将图片变成黑白图片

我需要爬取数据的这个后台网站验证码是黄底白字的,这种色差较小的tesserocr识别起来比较困难,稍微试了一下,基本上没怎么识别对过。。。所以我们需要先将图片变成色差最大的黑白图片。初始图片见下图:

首先,将图片变成灰色,并将灰色图片保存起来方便后续做对比,变成灰色以后的图片如下:

变成灰色后,通过像素点的颜色值将灰色部分的背景变成白色,白色的具体内容变成黑色,这样白底黑字的黑白图片就有了:

处理成黑白图片的实现代码如下:

img = Image.open(self.code_path)
# 将图片变成灰色
img_gray = img.convert('L')
img_gray.save('../images/code_gray.png')
# 转成黑白图片
img_black_white = img_gray.point(lambda x: 0 if x > 200 else 255)
img_black_white.save('../images/code_black_white.png')

2. 去除图片噪点

图片转成黑白以后,一些杂点也随着我们的主体内容变成了黑色的点,这样对识别的效果也有较大的影响,所以需要想办法将这些干扰点去掉。这里就需要借助opencv的功能了,在使用opencv去除噪点之前,需要先将图片做灰值化以及二值化处理,具体代码如下所示:

# opencv处理
img_cv = cv2.imread('../images/code_black_white.png')
# 灰值化
im = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# 二值化
cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)

基本处理之后,就需要消除噪点了,消除噪点的原理也比较简单,就是遍历图片的每一个像素点,找到其上下左右四个像素点位置的颜色,如果这四个点中白色点的数量大于2则说明这个点是噪点,需要将该点的颜色直接置为白色点,在边框位置的像素点也直接置为白色,因为主要内容一般都是在图片中间的。以下为处理噪点的代码:

# 噪点处理
def interference_point(img):
  filename = '../images/code_result.png'
  h, w = img.shape[:2]
  # 遍历像素点进行处理
  for y in range(0, w):
    for x in range(0, h):
      # 去掉边框上的点
      if y == 0 or y == w - 1 or x == 0 or x == h - 1:
        img[x, y] = 255
        continue
      count = 0
      if img[x, y - 1] == 255:
        count += 1
      if img[x, y + 1] == 255:
        count += 1
      if img[x - 1, y] == 255:
        count += 1
      if img[x + 1, y] == 255:
        count += 1
      if count > 2:
        img[x, y] = 255
  cv2.imwrite(filename, img)
  return img, filename

噪点处理完毕之后,就是一张非常清晰的图片了:

这个时候就可以直接使用tesserocr来识别了,具体识别的方式如下:

tesserocr.image_to_text(img_result)

识别测试结果如下:

经过多次识别验证测试,另外也由于这个验证码的字体相对比较规范,所以成功率是相当的高了,即使偶尔的一次失败,我们也是可以进行重试就又成功了。哈哈, 差不多就是这个样子啦,欢迎大家指正文中的问题~~不多说了,我要去使用新学的技术去做“坏事”了!

到此这篇关于Python3使用tesserocr识别字母数字验证码的实现的文章就介绍到这了,更多相关Python3 tesserocr识别字母数字验证码内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • win10安装tesserocr配置 Python使用tesserocr识别字母数字验证码

    链接:https://pan.baidu.com/s/1l2yiba7ZTPUTf41ZnJ4PYw 提取码:t3bq win10安装tesserocr 首先需要下载tesseract,它为tesserocr提供底层支持.具体下载官方路径:https://github.com/UB-Mannheim/tesseract/wiki,选择对应的系统版本,可以选择一个相对不带dev的稳定版本下载,如:tesseract-ocr-setup-3.05.02-20180621.exe.然后一路安装,唯一记

  • python验证码识别教程之灰度处理、二值化、降噪与tesserocr识别

    前言 写爬虫有一个绕不过去的问题就是验证码,现在验证码分类大概有4种: 图像类 滑动类 点击类 语音类 今天先来看看图像类,这类验证码大多是数字.字母的组合,国内也有使用汉字的.在这个基础上增加噪点.干扰线.变形.重叠.不同字体颜色等方法来增加识别难度. 相应的,验证码识别大体可以分为下面几个步骤: 灰度处理 增加对比度(可选) 二值化 降噪 倾斜校正分割字符 建立训练库 识别 由于是实验性质的,文中用到的验证码均为程序生成而不是批量下载真实的网站验证码,这样做的好处就是可以有大量的知道明确结果

  • Python3使用tesserocr识别字母数字验证码的实现

    一.背景 最近有个需求是从一个后台的留言网站爬取留言数据,后台管理网站必然涉及到了登录,登录就有个验证码的问题必须得解决,由于验证码是从后端生成的,并且不了解其生成规则,那就只能通过图像识别技术来做验证码识别了!通过查阅资料发现Python中的的tesserocr这个库好像使用的比较多,所以对这个库进行了一番研究,并且实现了那个后台网站验证码的识别. 二.准备工作 1. 安装tesserocr 由于我使用的Python版本是python3.5,所以一下所有操作都是基于python3的,如果有py

  • php中文字母数字验证码实现代码

    英文同数字 <?php Header("Content-type:image/png"); //定义header,声明图片文件,最好是png,无版权之扰;  //生成新的四位整数验证码 session_start();//开启session; $authnum_session = '';  $str = 'abcdefghijkmnpqrstuvwxyz1234567890';  //定义用来显示在图片上的数字和字母; $l = strlen($str); //得到字串的长度; 

  • Python3爬虫关于识别检验滑动验证码的实例

    上节我们了解了图形验证码的识别,简单的图形验证码我们可以直接利用 Tesserocr 来识别,但是近几年又出现了一些新型验证码,如滑动验证码,比较有代表性的就是极验验证码,它需要拖动拼合滑块才可以完成验证,相对图形验证码来说识别难度上升了几个等级,本节来讲解下极验验证码的识别过程. 1. 本节目标 本节我们的目标是用程序来识别并通过极验验证码的验证,其步骤有分析识别思路.识别缺口位置.生成滑块拖动路径,最后模拟实现滑块拼合通过验证. 2. 准备工作 本次我们使用的 Python 库是 Selen

  • Python3爬虫中识别图形验证码的实例讲解

    本节我们首先来尝试识别最简单的一种验证码,图形验证码,这种验证码出现的最早,现在也很常见,一般是四位字母或者数字组成的,例如中国知网的注册页面就有类似的验证码,链接为:http://my.cnki.net/elibregister/commonRegister.aspx,页面: 表单的最后一项就是图形验证码,我们必须完全输入正确图中的字符才可以完成注册. 1.本节目标 本节我们就以知网的验证码为例,讲解一下利用 OCR 技术识别此种图形验证码的方法. 2. 准备工作 识别图形验证码需要的库有 T

  • Python3爬虫关于识别点触点选验证码的实例讲解

    上一节我们实现了极验验证码的识别,但是除了极验其实还有另一种常见的且应用广泛的验证码,比较有代表性的就是点触验证码. 可能你对这个名字比较陌生,但是肯定见过类似的验证码,比如 12306,这就是一种典型的点触验证码,如图所示: 我们需要直接点击图中符合要求的图,如果所有答案均正确才会验证成功,如果有一个答案错误,验证就会失败,这种验证码就可以称之为点触验证码. 另外还有一个专门提供点触验证码服务的站点,叫做 TouClick,其官方网站为:https://www.touclick.com/,本节

  • python3定位并识别图片验证码实现自动登录功能

    会用到的库的 1.selenium的webdriver 2.tesserocr或者pytesseract进行图像识别 3.pillow的Image进行图片处理 from selenium import webdriver import tesserocr from PIL import Image tesserocr的安装. 获取验证码图片方法1: def get_code_image(file_name): driver.save_screenshot(file_name) # 截取整个屏幕并

  • 原生js实现数字字母混合验证码的简单实例

    本文实例讲述了原生js实现数字字母混合验证码的全部代码,重点是注释很详细,便于大家理解,特分享给大家供大家参考.具体如下: 运行效果截图如下: 具体代码如下: <!DOCTYPE html> <html> <head> <meta charset="gb2312"> <title></title> <style type="text/css"> body, div { margin:

  • php生成数字字母的验证码图片

    php生成数字字母的验证码图片 <?php header ('Content-Type: image/png'); $image=imagecreatetruecolor(100, 30); $color=imagecolorallocate($image, 255, 255, 255); imagefill($image, 20, 20, $color); //只含有数字 // for($i=0;$i<4;$i++){ // $font=6; // $x=rand(5,10)+$i*100/

随机推荐