Java实现最小高度树

目录
  • 题设要求
  • 示例 1:
  • 示例 2:
  • 解题思路
  • 算法

题设要求

树是一个无向图,其中任何两个顶点只通过一条路径连接。 换句话说,一个任何没有简单环路的连通图都是一棵树。

给你一棵包含 n 个节点的树,标记为 0 到 n - 1 。给定数字 n 和一个有 n - 1 条无向边的 edges 列表(每一个边都是一对标签),其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间存在一条无向边。

可选择树中任何一个节点作为根。当选择节点 x 作为根节点时,设结果树的高度为 h 。在所有可能的树中,具有最小高度的树(即,min(h))被称为 最小高度树 。

请你找到所有的 最小高度树 并按 任意顺序 返回它们的根节点标签列表。

树的 高度 是指根节点和叶子节点之间最长向下路径上边的数量。

示例 1:

输入:n = 4, edges = [[1,0],[1,2],[1,3]]
输出:[1]
解释:如图所示,当根是标签为 1 的节点时,树的高度是 1 ,这是唯一的最小高度树。

示例 2:

输入:n = 6, edges = [[3,0],[3,1],[3,2],[3,4],[5,4]]
输出:[3,4]

提示:
1 <= n <= 2 * 104
edges.length == n - 1
0 <= ai, bi < n
ai != bi
所有 (ai, bi) 互不相同
给定的输入保证是一棵树,并且不会有重复的边

解题思路

​  由上述两个图我们可以得出结论:题中需要求解的是树里面的中心节点,而每个树的中心节点不会超过两个。

​  而我们想要求得树里面的中心节点,我们就可以逐层FBS(也就是逐层将出度为一的叶子节点剪掉),直至剪到最后一层,就可以将结果输出了!

算法

class Solution {
    public List<Integer> findMinHeightTrees(int n, int[][] edges) {
        List<Integer> res = new ArrayList<Integer>();
        //如果只有一个节点,则它就是最小高度树
        if(n == 1){
            res.add(0);
            return res;
        }

        //每个节点的邻居数量
        int [] degree = new int[n];
        //每个节点的邻居
        HashMap<Integer,List<Integer>> map = new HashMap<>();

        for(int [] edge : edges){
            int a = edge[0];
            int b = edge[1];

            degree[a]++;
            degree[b]++;

            if(map.get(a) == null){
                map.put(a,new ArrayList<Integer>());//key:节点   value:邻居
            }

            if(map.get(b) == null){
                map.put(b,new ArrayList<Integer>());//key:节点   value:邻居
            }

            map.get(a).add(b);
            map.get(b).add(a);
        }

        //建立队列
        LinkedList<Integer> leafNodes = new LinkedList<Integer>();//表示叶子节点
        //将所有度为1的节点入队
        for(int i = 0;i < degree.length;i++){
            if(degree[i] == 1){
                leafNodes.add(i);
            }
        }

        while(leafNodes.size() > 0){
            res.clear();
            //每一层节点的数量
            int size = leafNodes.size();

            for(int i = 0;i < size;i++){
                int leaf = leafNodes.poll();
                //将当前节点加入到结果集
                res.add(leaf);

                List<Integer> neighbors = map.get(leaf);
                //将出度减一,也就是将最外层的叶子节点剪掉
                for(int neighbor : neighbors){
                    degree[neighbor]--;
                    if(degree[neighbor] == 1){
                        //叶子节点入队
                        leafNodes.add(neighbor);
                    }
                }
            }
        }
        return res;
    }
}

到此这篇关于Java实现最小高度树的文章就介绍到这了,更多相关Java 最小高度树内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java删除二叉搜索树最大元素和最小元素的方法详解

    本文实例讲述了Java删除二叉搜索树最大元素和最小元素的方法.分享给大家供大家参考,具体如下: 在前面一篇<Java二叉搜索树遍历操作>中完成了树的遍历,这一节中将对如何从二叉搜索树中删除最大元素和最小元素做介绍: 我们要想删除二分搜索树的最小值和最大值,就需要先找到二分搜索树的最小值和最大值,其实也还是很容易的,因为根据二叉搜索树的特点,它的左子树一定比当前节点要小,所以二叉搜索树的最小值一定是左子树一直往下走,一直走到底.同样在二叉搜索树中,右子树节点值,一定比当前节点要大,所以右子树一直

  • Java求最小生成树的两种算法详解

    目录 1 最小生成树的概述 2 普里姆算法(Prim) 2.1 原理 2.2 案例分析 3 克鲁斯卡尔算法(Kruskal) 3.1 原理 3.2 案例分析 4 邻接矩阵加权图实现 5 邻接表加权图实现 6 总结 介绍了图的最小生成树的概念,然后介绍了求最小生成树的两种算法:Prim算法和Kruskal算法的原理,最后提供了基于邻接矩阵和邻接链表的图对两种算法的Java实现. 阅读本文需要一定的图的基础,如果对于图不是太明白的可以看看这篇文章:Java数据结构之图的原理与实现. 1 最小生成树的

  • Java实现二叉树的建立、计算高度与递归输出操作示例

    本文实例讲述了Java实现二叉树的建立.计算高度与递归输出操作.分享给大家供大家参考,具体如下: 1. 建立 递归输出 计算高度 前中后三种非递归输出 public class Tree_Link { private int save = 0; private int now = 0; Scanner sc = new Scanner(System.in); /* * 构造函数 */ Tree_Link(){ } /* * 链表建立 */ public Tree Link_Build(Tree

  • Java实现最小生成树算法详解

    目录 定义 带权图的实现 Kruskal 算法 二叉堆 并查集 实现算法 Prim 算法 定义 在一幅无向图G=(V,E) 中,(u,v) 为连接顶点u和顶点v的边,w(u,v)为边的权重,若存在边的子集T⊆E且(V,T) 为树,使得 最小,这称 T 为图 G 的最小生成树. 说的通俗点,最小生成树就是带权无向图中权值和最小的树.下图中黑色边所标识的就是一棵最小生成树(图片来自<算法第四版>),对于权值各不相同的连通图来说最小生成树只会有一棵: 带权图的实现 在 <如何在 Java 中实

  • java图论普利姆及克鲁斯卡算法解决最小生成树问题详解

    目录 什么是最小生成树? 普利姆算法  算法介绍 应用 --> 修路问题  图解分析  克鲁斯卡尔算法 算法介绍 应用场景 -- 公交站问题  算法图解   算法分析  如何判断是否构成回路 什么是最小生成树? 最小生成树(Minimum Cost Spanning Tree),简称MST. 最小生成树要求图是连通图.连通图指图中任意两个顶点都有路径相通,通常指无向图.理论上如果图是有向.多重边的,也能求最小生成树,只是不太常见. 普利姆算法  算法介绍 应用 --> 修路问题  图解分析 

  • java 实现最小二叉树堆排序的实例

    java 实现最小二叉堆排序的实例 写在前面: 一觉醒来,我就突然有灵感了...... 最小二叉堆定义: 二叉堆是完全二元树或者是近似完全二元树,最小二叉堆是父结点的键值总是小于或等于任何一个子节点的键值的堆堆. 存储: 二叉堆一般用数组来表示. 根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2: 位置k的叶子的父节点位置为(k-1)/2: 实现: /** * @description 元素添加到末尾,和它的父节点比,如果比它小就交换 * @param array * *

  • Java实现最小高度树

    目录 题设要求 示例 1: 示例 2: 解题思路 算法 题设要求 树是一个无向图,其中任何两个顶点只通过一条路径连接. 换句话说,一个任何没有简单环路的连通图都是一棵树. 给你一棵包含 n 个节点的树,标记为 0 到 n - 1 .给定数字 n 和一个有 n - 1 条无向边的 edges 列表(每一个边都是一对标签),其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间存在一条无向边. 可选择树中任何一个节点作为根.当选择节点 x 作为根节点时,设结果树的高度为 h

  • Java实现二分查找树及其相关操作

    二分查找树(Binary Search Tree)的基本操作有搜索.求最大值.求最小值.求前驱.求后继.插入及删除. 对二分查找树的进行基本操作所花费的时间与树的高度成比例.例如有n个节点的完全二叉树,对它进行的基本操作的时间复杂度为O(logn).然而,如果树是一个有n个节点的线性的链,则在这种情况下的时间复杂度为O(n). 1.什么是二分查找树 二分查找树是一种有组织的二叉树.我们可以通过链接节点表示这样一棵树.每个节点包含键(key),数据(data),左子节点(left),右子节点(ri

  • Java数据结构学习之树

    一.树 1.1 概念 与线性表表示的一一对应的线性关系不同,树表示的是数据元素之间更为复杂的非线性关系. 直观来看,树是以分支关系定义的层次结构. 树在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可以用树的形象来表示. 简单来说,树表示的是1对多的关系. 定义(逻辑结构): 树(Tree)是n( n>=0 )个结点的有限集合,没有结点的树称为空树,在任意一颗非空树中: 有且仅有一个特定的称为根(root)的结点 . 当n>1的时,其余结点可分为 m( m>0 ) 个互不相交的

  • Java详解AVL树的应用

    目录 一.什么是AVL树 1.二叉搜索树 2.为什么引入了AVL树 3.什么是AVL树 二.自己构造AVL树 三.AVL树的插入和删除 1.插入 1.1.右单旋 1.2.左单旋 1.3.左右双旋 1.4.右左双旋 2.删除 一.什么是AVL树 在认识AVL树之前我们先认识一下什么是二叉搜索树: 1.二叉搜索树 二叉搜索树又称为二叉排序树,二叉搜索树满足所有的左孩子节点都小于其根节点的值,所有的右孩子节点都大于其根节点的值,二叉搜索树上的每一棵子树都是一棵二叉搜索树,因此二叉搜索树通过中序遍历可以

  • DIV CSS网页布局 最小高度(min-height)的妙用

    假定有二个BOX,我们需要它的最小高度为150PX. CSS div.box1,div.box2{ width: 300px; min-height: 150px; background: #EEE; float: left; margin-right: 20px; } xhtml <div>IE中没保持最小高度为150px</div> <div>最小高度可以设定一个BOX的最小高度, 当其内容较少时时,也能保持BOX的高度为一定</div> 现在的效果,I

  • CSS Div 最小高度在IE 6 和IE 7中的兼容性问题

    浏览器兼容问题-CSS Div 最小高度在IE 6 和IE 7中的兼容性问题 用CSS 的定义一个DIV的高度时,在IE 7浏览器下可以正常显示.但是在IE 6 中,height 在10px以下就无法定义了.这点跟表格有点类似.解决的方法如下: 法一:定义overflow属性.比如想定义一个高度为2px 的线条. <div style="height:2px;overflow:hidden;background:#000000;width:778px;"></div&

  • java实现递归菜单树

    本文实例为大家分享了java实现递归菜单树的具体代码,供大家参考,具体内容如下 1.表结构 SET FOREIGN_KEY_CHECKS=0; -- ---------------------------- -- Table structure for menu -- ---------------------------- DROP TABLE IF EXISTS `menu`; CREATE TABLE `menu` ( `id` int(11) NOT NULL AUTO_INCREMEN

  • Java中关于字典树的算法实现

    字典树(前缀树)算法实现 前言 字典树,又称单词查找树,是一个典型的 一对多的字符串匹配算法."一"指的是一个模式串,"多"指的是多个模板串.字典树经常被用来统计.排序和保存大量的字符串.它利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较. 字典树有3个基本性质: 根节点不包含字符,其余的每个节点都包含一个字符: 从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串: 每个节点的所有子节点包含的字符都不相同. pass参数:代表从这个

  • Java数据结构之线段树详解

    目录 介绍 代码实现 线段树构建 区间查询 更新 总结 介绍 线段树(又名区间树)也是一种二叉树,每个节点的值等于左右孩子节点值的和,线段树示例图如下 以求和为例,根节点表示区间0-5的和,左孩子表示区间0-2的和,右孩子表示区间3-5的和,依次类推. 代码实现 /** * 使用数组实现线段树 */ public class SegmentTree<E> { private Node[] data; private int size; private Merger<E> merge

  • Java数据结构之线段树的原理与实现

    目录 简介 实现思路 节点定义 构建线段树 求解区间和 更新线段树 简介 线段树是一种二叉搜索树,是用来维护区间信息的数据结构.可以在O(logN)的时间复杂度内实现单点修改.区间修改.区间查询(区间求和,求区间最大值,求区间最小值)等操作.接下来我以实现区间求和为例子来讲解线段树(最大值和最小值与求和实现方式几乎无异),假设存在一个数组[1,4,6,3,9]. 实现思路 从线段树的定义,我们首先需要定义一个树节点,节点包含区间和(23),区间([1-5]),左节点,右节点等.(如果要实现求区间

随机推荐