C++ opencv图像平滑滤波器使用示例

目录
  • 前言
  • 一、均值滤波
    • 1.均值滤波函数
    • 2.均值滤波代码
  • 二、高斯滤波
    • 1.高斯滤波函数
    • 2.高斯滤波代码
  • 三、中值滤波
    • 1.中值滤波函数
    • 2.中值滤波代码
  • 四、双边滤波
    • 1.双边滤波函数
    • 2.双边滤波代码
  • 总结

前言

图像平滑是一种实用的数字图像处理技术,一个较好的平滑处理方法既能消除图像噪声,又不使图像边缘轮廓和线条变模糊。

一、均值滤波

归一化方框滤波器是很简单的滤波器,输出像素值是核窗口内像素值的均值,如果使用归一化处理,方框滤波就是均值滤波,实际上均值滤波是方框滤波归一化后的特殊情况。均值不能很好的保护细节。

1.均值滤波函数

opencv提供了blur函数来实现均值滤波,函数声明如下:

void blur(InputArray src, OutputArray dst,
		Size ksize, Point anchor = Point(-1, -1),
		int borderType = BORDER_DEFAULT);
	src 输入图像
	dst 输出图像
	Ksize 内核的大小
	anchor 锚点 默认值Point(-1, - 1)表示锚位于内核中心。
	bordertype 边界像素模式

2.均值滤波代码

#include<iostream>
#include<opencv.hpp>
using namespace std;
using namespace cv;
int main()
{
	Mat img1, img2;
	img1 = imread("猫1.jpg");
	imshow("原图", img1);
	blur(img1, img2, Size(20, 20));
	imshow("线性滤波", img2);
	waitKey(0);
}

效果如下:

二、高斯滤波

高斯滤波是一种线性平滑滤波,对于除去高斯噪声有很好的效果,高斯滤波是对输入数组的每个点与输入的高斯滤波模板执行卷积计算,然后精这些结果一块组成滤波后的输出数组,具体操作是,用一个模板(或者卷积,掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值,去代替模板中心像素点的值。

1.高斯滤波函数

opencv提供了GaussianBlur函数来实现均值滤波,函数声明如下:

void GaussianBlur(InputArray src, OutputArray dst, Size ksize,
		double sigmaX, double sigmaY = 0,
		int borderType = BORDER_DEFAULT);
	src 输入图像
	dst 输出图像
	ksize 高斯核大小  他们必须是奇数
	sigmax x方向上是高斯核标准差
	sigmay y方向上是高斯核标准差
	bordertype 边界像素模式

2.高斯滤波代码

int main()
{
	Mat img1, img2;
	img1 = imread("猫1.jpg");
	imshow("原图", img1);
	GaussianBlur(img1, img2, Size(35, 35),0);
	imshow("高斯滤波", img2);
	waitKey(0);
}

效果图:

三、中值滤波

中值滤波是用像素点领域灰度值的中值来代替该像素点的灰度值,也就是说用一片区域的中间值来代替所有值,可以去除最大值和最小值 ,它的优点是对去除斑点噪声和椒盐噪声很有用,缺点是中值滤波时间是均值滤波的5倍以上

1.中值滤波函数

opencv提供了medianBlur函数来实现均值滤波,函数声明如下:

void medianBlur(InputArray src, OutputArray dst, int ksize);
	src 输入
	dst 输出
	Ksize 孔径线性尺寸 它必须是奇数且大于1

2.中值滤波代码

int main()
{
	Mat img1, img2;
	img1 = imread("猫1.jpg");
	imshow("原图", img1);
	medianBlur(img1, img2,9);
	imshow("中值滤波", img2);
	waitKey(0);
}

效果如下:

四、双边滤波

之前所说的滤波器都是为了平滑图像,问题是有些时候这些滤波器不仅削弱了噪声,连带着吧边缘也磨掉了,为了避免这样的情形(至少在一定程度上),我们可以使用双边滤波,它是一种非线性滤波器,它可以达到边缘,降噪平滑的效果,也是采用加权平均的方法,用周边像素亮度值的加权平均代表某个像素的强度。双边滤波与高斯滤波相比,对于图像的边缘信息能够更好的保存

1.双边滤波函数

opencv提供了bilateralFilter函数来实现均值滤波,函数声明如下:

	void bilateralFilter(InputArray src, OutputArray dst, int d,
		double sigmaColor, double sigmaSpace,
		int borderType = BORDER_DEFAULT);
	src 输入
	dst 输出
	d 滤波时所用的每个像素邻域的直径
	sigmaColor 在颜色空间中过滤。
	sigmaSpace 在坐标空间中过滤
	borderType 边界像素模式

2.双边滤波代码

int main()
{
	Mat img1, img2;
	img1 = imread("猫1.jpg");
	imshow("原图", img1);
	bilateralFilter(img1, img2, 30,30,30);
	imshow("双边滤波", img2);
	waitKey(0);
}

效果如下:

总结

以上就是本文全部内容,简单介绍了线性滤波(均值滤波和高斯滤波)和非线性滤波(中值滤波和双边滤波),更多关于opencv图像平滑的资料请关注我们其它相关文章!

(0)

相关推荐

  • opencv3/C++图像滤波实现方式

    图像滤波在opencv中可以有多种实现形式 自定义滤波 如使用3×3的掩模: 对图像进行处理. 使用函数filter2D()实现 #include<opencv2/opencv.hpp> using namespace cv; int main() { //函数调用filter2D功能 Mat src,dst; src = imread("E:/image/image/daibola.jpg"); if(!src.data) { printf("can not l

  • C++之OpenCV图像高光调整具体流程

    实现原理 PS中的高光命令是一种校正由于太接近相机闪光灯而有些发白的焦点的方法.在用其他方式采光的图像中,这种调整也可用于使高光区域变暗.要实现图像的高光调整,首先要识别出高光区:再通过对高光区的色彩进行一定变换,使其达到提光或者暗化效果:最后也是最重要的,就是对高光区和非高光区的边缘作平滑处理. 下方介绍具体流程. 具体流程 1)读取识别图像的原图,并转灰度图,再归一化. // 生成灰度图 cv::Mat gray = cv::Mat::zeros(input.size(), CV_32FC1

  • C++图像处理之双边滤波

    本文实例为大家分享了C++图像处理之双边滤波的具体代码,供大家参考,具体内容如下 1. 近期在学习双边滤波相关知识,其原理如下(以后补上): 2 .灰度图双边滤波实现C++代码如下,网上大多数是基于8位灰度图和彩色图像的.(此次代码未经优化,可去除opencv依赖): //灰度图双边滤波 void m_bilateralFilter(cv::Mat src,cv::Mat& dst,int radius,float sigma_r,float sigma_d) { if (src.empty()

  • C++实现OpenCV方框滤波的代码

    一.方框滤波    方框滤波是均值滤波的一种形式.在均值滤波中,滤波结果的像素值是任意一个点的邻域平均值,等于各邻域像素值之和的均值,而在方框滤波中,可以自由选择是否对均值滤波的结果进行归一化,即可以自由选择滤波结果是邻域像素值之和的平均值,还是邻域像素值之和. 二.C++代码 #include <iostream> #include <opencv2\opencv.hpp> using namespace cv; using namespace std; int main() {

  • C++ opencv图像平滑滤波器使用示例

    目录 前言 一.均值滤波 1.均值滤波函数 2.均值滤波代码 二.高斯滤波 1.高斯滤波函数 2.高斯滤波代码 三.中值滤波 1.中值滤波函数 2.中值滤波代码 四.双边滤波 1.双边滤波函数 2.双边滤波代码 总结 前言 图像平滑是一种实用的数字图像处理技术,一个较好的平滑处理方法既能消除图像噪声,又不使图像边缘轮廓和线条变模糊. 一.均值滤波 归一化方框滤波器是很简单的滤波器,输出像素值是核窗口内像素值的均值,如果使用归一化处理,方框滤波就是均值滤波,实际上均值滤波是方框滤波归一化后的特殊情

  • python opencv之SURF算法示例

    本文介绍了python opencv之SURF算法示例,分享给大家,具体如下: 目标: SURF算法基础 opencv总SURF算法的使用 原理: 上节课使用了SIFT算法,当时这种算法效率不高,需要更快速的算法.在06年有人提出了SURF算法"加速稳定特征",从名字上来看,他是SIFT算法的加速版本. (原文) 在SIFT算法当中使用高斯差分方程(Difference of Gaussian)对高斯拉普拉斯方程( Laplacian of Gaussian)进行近似.然而,SURF使

  • Python OpenCV实现图形检测示例详解

    目录 1. 轮廓识别与描绘 1.1 cv2.findComtours()方法 1.2 cv2.drawContours() 方法 1.3 代码示例 2. 轮廓拟合 2.1 矩形包围框拟合 - cv2.boundingRect() 2.2圆形包围框拟合 - cv2.minEnclosingCircle() 3. 凸包 绘制 4. Canny边缘检测 - cv2.Canny() 4.1 cv2.Canny() 用法简介 4.2 代码示例 5. 霍夫变换 5.1 概述 5.2 cv2.HoughLin

  • python opencv之SIFT算法示例

    本文介绍了python opencv之SIFT算法示例,分享给大家,具体如下: 目标: 学习SIFT算法的概念 学习在图像中查找SIFT关键的和描述符 原理: (原理部分自己找了不少文章,内容中有不少自己理解和整理的东西,为了方便快速理解内容和能够快速理解原理,本文尽量不使用数学公式,仅仅使用文字来描述.本文中有很多引用别人文章的内容,仅供个人记录使用,若有错误,请指正出来,万分感谢) 之前的harris算法和Shi-Tomasi 算法,由于算法原理所致,具有旋转不变性,在目标图片发生旋转时依然

  • python opencv之分水岭算法示例

    本文介绍了python opencv之分水岭算法示例,分享给大家,具体如下: 目标 使用分水岭算法对基于标记的图像进行分割 使用函数cv2.watershed() 原理: 灰度图像可以被看成拓扑平面,灰度值高的区域可以看出山峰,灰度值低的区域可以看成是山谷.向每一个山谷当中灌不同颜色的水.水位升高,不同山谷的水会汇合,为防止不同山谷的水汇合,小在汇合处建立起堤坝.然后继续灌水,然后再建立堤坝,直到山峰都掩模.构建好的堤坝就是图像的分割. 此方法通常会得到过渡分割的结果,因为图像中的噪声以及其他因

  • Opencv对象追踪的示例代码

    1 HSV上下限 颜色的HSV上下限如下表: 2 追踪单个颜色 import cv2 as cv import numpy as np cap = cv.VideoCapture(0) lower_color = np.array([0, 43, 46]) upper_color = np.array([10, 255, 255]) while cap.isOpened(): # 读取帧 _, frame = cap.read() # 转换颜色空间 BGR 到 HSV hsv = cv.cvtC

  • OpenCV 绘制同心圆的示例代码

    目录 功能函数 测试代码 最近在学习OpenCV,本文主要介绍了OpenCV 绘制同心圆的示例代码,分享给大家,具体如下: 功能函数 // 绘制同心圆 void DrawConcentricCircle(cv::Mat mask, const cv::Point2i &center, int radius1,int radius2, const cv::Scalar &color, int thickness,int linetype) { // 创建画布 cv::Mat canvas =

  • python计算机视觉opencv卡号识别示例详解

    目录 一.模板预处理 1.将模板设置为二值图 2.检测模板的轮廓 3.对模板轮廓排序,并将数字和轮廓一一对应,以字典存储 4.备注 二.图片预处理 1.初始化卷积核 2.图片预处理第一部分 3.图像预处理第二部分 三.轮廓处理 1.大轮廓过滤 2.小轮廓分割 模板图片如下: 需识别的图片如下: 一.模板预处理 1.将模板设置为二值图 2.检测模板的轮廓 3.对模板轮廓排序,并将数字和轮廓一一对应,以字典存储 排序的函数如下: 排序并存储: 4.备注 ①每一个数字对应的是二值图截出来的那个数字图的

  • OpenCV实现相机标定示例详解

    目录 环境准备 相机标定 棋盘格图片 实时显示相机的画面 在线标定 实时显示相机画面,按键保存能检测到角点的 棋盘格图片 离线标定 畸变矫正 环境准备 vs2015+opencv4.10安装与配置 相机标定 棋盘格图片 可以自己生成,然后打印到A4纸上.(也可以去TB买一块,平价买亚克力板的,不反光买氧化铝材质,高精度买陶瓷的) /** * 生成棋盘格图片 **/ int generateCalibrationPicture() { //Mat frame = imread("3A4.bmp&q

  • Python OpenCV图像颜色变换示例

    目录 给图像添加颜色 图像按位操作 图像的通道操作 给图像添加颜色 在使用OpenCV操作图像时,有时候需要给图像添加不同的颜色,以达到不同的风格效果.这里介绍的主要是opencv中的cv.applyColorMap()函数. 给图像应用颜色函数cv.applyColorMap(src, colormap, dst=None)src:表示传入的原图:colormap:颜色图类型(17种).可以单独使用,也可以以一个列表的形式批量使用. 以下图举例实现: 直接上代码: # -*-coding:ut

随机推荐