Python语法垃圾回收机制原理解析

一 引入

解释器在执行到定义变量的语法时,会申请内存空间来存放变量的值,而内存的容量是有限的,这就涉及到变量值所占用内存空间的回收问题,当一个变量值没有用了(简称垃圾)就应该将其占用的内存给回收掉,那什么样的变量值是没有用的呢?
由于变量名是访问到变量值的唯一方式,所以当一个变量值不再关联任何变量名时,我们就无法再访问到该变量值了,该变量值就是没有用的,就应该被当成一个垃圾回收。

毫无疑问,内存空间的申请与回收是非常耗费精力的事情,而且存在很大的危险性,稍有不慎就有可能引发内存溢出问题,好在Cpython解释器提供了自动的垃圾回收机制来帮我们 解决了这件事。

二、什么是垃圾回收机制?

垃圾回收机制(简称GC)是Python解释器自带一种机,专门用来回收不可用的变量值所占用的内存空间

三、为什么要用垃圾回收机制?

程序运行过程中会申请大量的内存空间,而对于一些无用的内存空间如果不及时清理的话会导致内存使用殆尽(内存溢出),导致程序崩溃,因此管理内存是一件重要且繁杂的事情,而python解释器自带的垃圾回收机制把程序员从繁杂的内存管理中解放出来。

四、垃圾回收机制原理分析

Python的GC模块主要运用了“引用计数”(reference counting)来跟踪和回收垃圾。在引用计数的基础上,还可以通过“标记-清除”(mark and sweep)解决容对象可能产生的循环引用的问题,并且通过“分代回收”(generation collection)以空间换取时间的方式来进一步提高垃圾回收的效率。

4.1、什么是引用计数?

引用计数就是:变量值被变量名关联的次数

如:age=18

变量值18被关联了一个变量名age,称之为引用计数为1

引用计数增加:

age=18 (此时,变量值18的引用计数为1)
m=age (把age的内存地址给了m,此时,m,age都关联了18,所以变量值18的引用计数为2)

引用计数减少:

age=10(名字age先与值18解除关联,再与3建立了关联,变量值18的引用计数为1)
del m(del的意思是解除变量名x与变量值18的关联关系,此时,变量18的引用计数为0)

值18的引用计数一旦变为0,其占用的内存地址就应该被解释器的垃圾回收机制回收

4.2、引用计数扩展阅读

变量值被关联次数的增加或减少,都会引发引用计数机制的执行(增加或减少值的引用计数),这存在明显的效率问题。

如果说执行效率还仅仅是引用计数机制的一个软肋的话,那么很不幸,引用计数机制还存在着一个致命的弱点,即循环引用(也称交叉引用)

# 如下我们定义了两个列表,简称列表1与列表2,变量名l1指向列表1,变量名l2指向列表2
>>> l1=['xxx'] # 列表1被引用一次,列表1的引用计数变为1
>>> l2=['yyy'] # 列表2被引用一次,列表2的引用计数变为1
>>> l1.append(l2) # 把列表2追加到l1中作为第二个元素,列表2的引用计数变为2
>>> l2.append(l1) # 把列表1追加到l2中作为第二个元素,列表1的引用计数变为2
# l1与l2之间有相互引用
# l1 = ['xxx'的内存地址,列表2的内存地址]
# l2 = ['yyy'的内存地址,列表1的内存地址]
>>> l1
['xxx', ['yyy', [...]]]
>>> l2
['yyy', ['xxx', [...]]]
>>> l1[1][1][

循环引用会导致:值不再被任何名字关联,但是值的引用计数并不会为0,应该被回收但不能被回收,什么意思呢?试想一下,请看如下操作

>>> del l1 # 列表1的引用计数减1,列表1的引用计数变为1
>>> del l2 # 列表2的引用计数减1,列表2的引用计数变为1

此时,只剩下列表1与列表2之间的相互引用,两个列表的引用计数均不为0,但两个列表不再被任何其他对象关联,没有任何人可以再引用到它们,所以它俩占用内存空间应该被回收,但由于相互引用的存在,每一个对象的引用计数都不为0,因此这些对象所占用的内存永远不会被释放,所以循环引用是致命的,这与手动进行内存管理所产生的内存泄露毫无区别。所以Python引入了“标记-清除” 与“分代回收”来分别解决引用计数的循环引用与效率低的问题

4.2.1 标记-清除

容器对象(比如:list,set,dict,class,instance)都可以包含对其他对象的引用,所以都可能产生循环引用。而“标记-清除”计数就是为了解决循环引用的问题。

在了解标记清除算法前,我们需要明确一点,关于变量的存储,内存中有两块区域:堆区与栈区,在定义变量时,变量名与值内存地址的关联关系存放于栈区,变量值存放于堆区,内存管理回收的则是堆区的内容,详解如下图,定义了两个变量x = 10、y = 20

当我们执行x=y时,内存中的栈区与堆区变化如下

标记/清除算法的做法是当应用程序可用的内存空间被耗尽的时,就会停止整个程序,然后进行两项工作,第一项则是标记,第二项则是清除

#1、标记
标记的过程其实就是,遍历所有的GC Roots对象(栈区中的所有内容或者线程都可以作为GC Roots对象),然后将所
有GC Roots的对象可以直接或间接访问到的对象标记为存活的对象,其余的均为非存活对象,应该被清除。
#2、清除
清除的过程将遍历堆中所有的对象,将没有标记的对象全部清除掉。

直接引用指的是从栈区出发直接引用到的内存地址,间接引用指的是从栈区出发引用到堆区后再进一步引用到的内存地址,以我们之前的两个列表l1与l2为例画出如下图像

当我们同时删除l1与l2时,会清理到栈区中l1与l2的内容

这样在启用标记清除算法时,发现栈区内不再有l1与l2(只剩下堆区内二者的相互引用),于是列表1与列表2都没有被标记为存活,二者会被清理掉,这样就解决了循环引用带来的内存泄漏问题

4.2.2 分代回收

背景:

基于引用计数的回收机制,每次回收内存,都需要把所有对象的引用计数都遍历一遍,这是非常消耗时间的,于是引入了分代回收来提高回收效率,分代回收采用的是用“空间换时间”的策略。

分代:

分代回收的核心思想是:在历经多次扫描的情况下,都没有被回收的变量,gc机制就会认为,该变量是常用变量,gc对其扫描的频率会降低,具体实现原理如下:

分代指的是根据存活时间来为变量划分不同等级(也就是不同的代)
新定义的变量,放到新生代这个等级中,假设每隔1分钟扫描新生代一次,如果发现变量依然被引用,那么该对象的权重(权重本质就是个整数)加一,当变量的权重大于某个设定得值(假设为3),会将它移动到更高一级的青春代,青春代的gc扫描的频率低于新生代(扫描时间间隔更长),假设5分钟扫描青春代一次,这样每次gc需要扫描的变量的总个数就变少了,节省了扫描的总时间,接下来,青春代中的对象,也会以同样的方式被移动到老年代中。也就是等级(代)越高,被垃圾回收机制扫描的频率越低

回收:

回收依然是使用引用计数作为回收的依据

虽然分代回收可以起到提升效率的效果,但也存在一定的缺点:

例如一个变量刚刚从新生代移入青春代,该变量的绑定关系就解除了,该变量应该被回收,但青春代的扫描频率低于新生代,所以该变量的回收就会被延迟。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python的垃圾回收机制详解

    引用计数 在Python源码中,每一个对象都是一个结构体表示,都有一个计数字段. typedef struct_object { int ob_refcnt; struct_typeobject *ob_type; } PyObject; PyObject是每个对象必有的内容,其中ob_refcnt就是作为引用计数.当一个对象有了新的引用时,它的ob_refcnt就会增加,引用它的对象被删除时则减少.一旦对象的引用计数为0,该对象立即被回收,占用空间就会被释放. 优点 简单易用 实时性好,一旦没

  • python对象销毁实例(垃圾回收)

    我就废话不多说了,直接上代码吧! '''python对象销毁(垃圾回收)''' class Point: 'info class' def __init__(self,x=0,y=0): self.x = x self.y = y def __del__(self): class_name = self.__class__.__name__ print(class_name, '销毁') pt1 = Point() pt2 = pt1 pt3 = pt2 print(id(pt1),id(pt2

  • Python内存管理方式和垃圾回收算法解析

    概要 在列表,元组,实例,类,字典和函数中存在循环引用问题.有 __del__ 方法的实例会以健全的方式被处理.给新类型添加GC支持是很容易的.支持GC的Python与常规的Python是二进制兼容的. 分代式回收能运行工作(目前是三个分代).由 pybench 实测的结果是大约有百分之四的开销.实际上所有的扩展模块都应该依然如故地正常工作(我不得不修改了标准发行版中的 new 和 cPickle 模块).一个叫做 gc 的新模块马上就可以用来调试回收器和设置调试选项. 回收器应该是跨平台可移植

  • python闭包、深浅拷贝、垃圾回收、with语句知识点汇总

    1.1 闭包 1.闭包概念 1. 在一个外函数中定义了一个内函数,内函数里运用了外函数的临时变量,并且外函数的返回值是内函数的引用,这样就构成了一个闭包 2. 一般情况下,在我们认知当中,如果一个函数结束,函数的内部所有东西都会释放掉,还给内存,局部变量都会消失. 3. 但是闭包是一种特殊情况,如果外函数在结束的时候发现有自己的临时变量将来会在内部函数中用到,就把这个临时变量绑定给了内部函数,然后自己再结束. 2.闭包特点 1. 必须有一个内嵌函数 2. 内嵌函数必须引用外部函数中的变量 3.

  • 基于Python对象引用、可变性和垃圾回收详解

    变量不是盒子 在示例所示的交互式控制台中,无法使用"变量是盒子"做解释.图说明了在 Python 中为什么不能使用盒子比喻,而便利贴则指出了变量的正确工作方式. 变量 a 和 b 引用同一个列表,而不是那个列表的副本 >>> a = [1, 2, 3] >>> b = a >>> a.append(4) >>> b [1, 2, 3, 4] 如果把变量想象为盒子,那么无法解释 Python 中的赋值:应该把变量视作

  • Python中垃圾回收和del语句详解

    Python中的垃圾回收算法是采用引用计数, 当一个对象的引用计数为0时, Python的垃圾回收机制就会将对象回收 a = "larry" b = a larry这个字符串对象, 在第一行被贴了a标签后, 引用计数为1, 之后在第二行, 由贴上了b标签, 此时, 该字符串对象的引用计数为 a = "larry" b = a del a 注意: 在Python语言中, del语句操作某个对象的时候, 并不是直接将该对象在内存中删除, 而是将该对象的引用计数-1 &g

  • python的内存管理和垃圾回收机制详解

    简单来说python的内存管理机制有三种 1)引用计数 2)垃圾回收 3)内存池 接下来我们来详细讲解这三种管理机制 1,引用计数: 引用计数是一种非常高效的内存管理手段,当一个pyhton对象被引用时其引用计数增加1,当其不再被引用时引用计数减1,当引用计数等于0的时候,对象就被删除了. 2,垃圾回收(这是一个很重要知识点): ①  引用计数 引用计数也是一种垃圾回收机制,而且是一种最直观,最简单的垃圾回收技术. 在Python中每一个对象的核心就是一个结构体PyObject,它的内部有一个引

  • python垃圾回收机制(GC)原理解析

    这篇文章主要介绍了python垃圾回收机制(GC)原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 今天想跟大家分享的是关于python的垃圾回收机制,虽然本人这会对该机制没有很深入的了解, 但是本着热爱分享的原则,还是囫囵吞枣地坐下记录分享吧, 万一分享的过程中开窍了呢.哈哈哈. 首先还是做一下概述吧: 我们都知道, 在做python的语言编程中, 相较于java, c++, 我们似乎很少去考虑到去做垃圾回收,内存释放的工作, 其实是p

  • Python语法垃圾回收机制原理解析

    一 引入 解释器在执行到定义变量的语法时,会申请内存空间来存放变量的值,而内存的容量是有限的,这就涉及到变量值所占用内存空间的回收问题,当一个变量值没有用了(简称垃圾)就应该将其占用的内存给回收掉,那什么样的变量值是没有用的呢? 由于变量名是访问到变量值的唯一方式,所以当一个变量值不再关联任何变量名时,我们就无法再访问到该变量值了,该变量值就是没有用的,就应该被当成一个垃圾回收. 毫无疑问,内存空间的申请与回收是非常耗费精力的事情,而且存在很大的危险性,稍有不慎就有可能引发内存溢出问题,好在Cp

  • python语言开发垃圾回收机制原理教程

    目录 一.什么是垃圾回收机制 二.为什么要有垃圾回收机制 三.垃圾回收机制的原理 1.引用计数 直接引用 间接引用 2.栈区 / 堆区 3.总结 四.标记清除 1.循环引用问题(也叫交叉引用) 2.循环引用导致的结果 3.解决方法 : 清除-标记 五.分代回收 1.效率问题 2.解决方法 : 分代回收 分代 回收 总结 一.什么是垃圾回收机制 垃圾回收机制(简称GC), 解释器自带的一种机制 它是一种动态存储管理技术,自动释放不再被程序引用的对象所占用的内存空间 二.为什么要有垃圾回收机制 程序

  • 分析python垃圾回收机制原理

    目录 引用计数 引用计数案例 执行结果: 导致引用计数 +1 的情况 导致引用计数-1 的情况 循环引用导致内存泄露 执行结果 分代回收 垃圾回收 gc 模块 常用函数: 引用计数 Python 语言默认采用的垃圾收集机制是『引用计数法 Reference Counting』,该算法最早 George E. Collins 在 1960 的时候首次提出,50 年后的今天,该算法依然被很多编程语言使用. 引用计数法的原理是:每个对象维护一个ob_ref字段,用来记录该对象当前被引用的次数,每当新的

  • 如何快速理解python的垃圾回收机制

    一.先来说说为什么要有垃圾回收 解释器在执行到定义变量得语法时,会申请内存空间来存放变量得值,但是由于内存空间是有限得,所以这就涉及到了内存回收问题了,当一个变量值没有用了(简称垃圾),这种时候就应该回收掉这个变量值得内存空间. 二.那么什么是垃圾回收机制 垃圾回收机制(简称GC)是Python解释器自带一种机,专门用来回收不可用的变量值所占用的内存空间 三.为什么要用垃圾回收机制呢? 程序运行过程中会申请大量的内存空间,而对于一些无用的内存空间如果不及时清理的话会导致内存使用殆尽(内存溢出),

  • Python小白垃圾回收机制入门

    引用计数 Python默认的垃圾收集机制是"引用计数",每个对象维护了一个ob_ref字段.它的优点是机制简单,当新的引用指向该对象时,引用计数加1,当一个对象的引用被销毁时减1,一旦对象的引用计数为0,该对象立即被回收,所占用的内存将被释放.它的缺点是需要额外的空间维护引用计数,不过最主要的问题是它不能解决"循环引用". 什么是循环引用?A和B相互引用而再没有外部引用A与B中的任何一个,它们的引用计数虽然都为1,但显然应该被回收,例子: a = { } # a 的

  • 浅谈Python的垃圾回收机制

    一.垃圾回收机制 Python中的垃圾回收是以引用计数为主,分代收集为辅.引用计数的缺陷是循环引用的问题. 在Python中,如果一个对象的引用数为0,Python虚拟机就会回收这个对象的内存. #encoding=utf-8 __author__ = 'kevinlu1010@qq.com' class ClassA(): def __init__(self): print 'object born,id:%s'%str(hex(id(self))) def __del__(self): pr

  • Python的垃圾回收机制深入分析

    一.概述: Python的GC模块主要运用了"引用计数"(reference counting)来跟踪和回收垃圾.在引用计数的基础上,还可以通过"标记-清除"(mark and sweep)解决容器对象可能产生的循环引用的问题.通过"分代回收"(generation collection)以空间换取时间来进一步提高垃圾回收的效率. 二.引用计数 在Python中,大多数对象的生命周期都是通过对象的引用计数来管理的.从广义上来讲,引用计数也是一种垃

  • Python参数传递及收集机制原理解析

    python参数传递时,主要有位置参数和关键字参数. 1. 位置参数:顾名思义,参数的位置顺序很重要,因为是直接根据位置赋值的. def func1(a, b): print(a,b) # 位置参数,位置顺序很重要 func1(1,2) 2. 关键字参数:首先使得位置不那么重要了,毕竟参数一多,有些人记不住位置也很正常:其次更重要的是可以提供初始值. def func2(c=1, d=2): print(c,d) # 关键字参数,1. 使得位置不那么重要:2. 可提供初始值 func2() #使

随机推荐