Python3的进程和线程你了解吗

目录
  • 1.概述
  • 2.多进程
  • 3.子进程
  • 4.进程间通信
  • 5.多线程
  • 6.Lock
  • 7.ThreadLocal
  • 8.进程VS线程
  • 9.分布式进程
  • 总结

1.概述

"""
基础知识:
1.多任务:操作系统可以同时运行多个任务;
2.单核CPU执行多任务:操作系统轮流让各个任务交替执行;
3.一个任务即一个进程(process),如:打开一个浏览器,即启动一个浏览器进程;
4.在一个进程内,要同时干多件事,需要同时运行多个子任务,把进程内的子任务称为"线程(Thread)";
5.每个进程至少做一件事,因此,一个进程至少有一个线程;
同时执行多线程的解决方案:
a.启动多个进程,每个进程虽然只有一个线程,但多个进程可以一块执行多个任务;
b.启动一个进程,在一个进程内启动多个线程,多个线程一块执行多个任务;
c.启动多个进程,每个进程启动多个线程;
即多任务的实现方式:
a.多进程模式;
b.多线程模式;
c.多进程+多线程模式;
"""

2.多进程

import os
print("Process (%s) start..." % os.getpid())
"""
只能在Linux/Unix/Mac上工作
pid = os.fork()
if pid == 0:
    print("I am child process (%s) and my parent is %s." % (os.getpid(), os.getppid()))
else:
    print("I (%s) just created a child process (%s)." % (os.getpid(), pid))
"""
print("Hello.")
# multiprocessing:跨平台多线程模块
# process_test.py文件,在交互下python process_test.py
from multiprocessing import Process
import os
def run_process(name):
    print("Run child process %s (%s)..." % (name, os.getpid()))
if __name__ == "__main__":
    print("Parent process %s." % os.getpid())
    p = Process(target = run_process, args = ("test",))
    print("Child process will start.")
    p.start()
    p.join()        # join()方法可以等待子进程结束后再继续往下运行,用于进程间的同步
    print("Child process end.")

# 结果输出:
Parent process 28340.
Child process will start.
Run child process test (31152)...
Child process end.

# Pool:用进程池批量创建子进程
# process.py文件,交互下python process.py
from multiprocessing import Pool
import os, time, random
def long_time_task(name):
    print('Run task %s (%s)...' % (name, os.getpid()))
    start = time.time()
    time.sleep(random.random() * 3)
    end = time.time()
    print('Task %s runs %0.2f seconds.' % (name, (end - start)))
if __name__=='__main__':
    print('Parent process %s.' % os.getpid())
    p = Pool(4)
    for i in range(5):
        p.apply_async(long_time_task, args=(i,))
    print('Waiting for all subprocesses done...')
    p.close()
    p.join()
    print('All subprocesses done.')

# 结果输出:
Parent process 31576.
Waiting for all subprocesses done...
Run task 0 (20416)...
Run task 1 (15900)...
Run task 2 (24716)...
Run task 3 (31148)...
Task 2 runs 0.72 seconds.
Run task 4 (24716)...
Task 4 runs 1.03 seconds.
Task 3 runs 1.82 seconds.
Task 1 runs 2.73 seconds.
Task 0 runs 2.82 seconds.
All subprocesses done.

3.子进程

# subprocess模块:启动一个子进程,控制其输入和输出
# subprocess_test.py文件,注:文件名不要和模块名相同,否则报错
import subprocess
print("$ nslookup www.python.org")
r = subprocess.call(["nslookup", "www.python.org"])
print("Exit code:", r)

# 结果输出:
$ nslookup www.python.org
服务器:  cache-a.guangzhou.gd.cn
Address:  202.96.128.86
非权威应答:
名称:    www.python.org
Addresses:  2a04:4e42:1a::223
          151.101.72.223
Exit code: 0

# 子进程需要输入,通过communicate()方法
import subprocess
print("$ nslookup")
p = subprocess.Popen(["nslookup"], stdin = subprocess.PIPE, stdout = subprocess.PIPE, stderr = subprocess.PIPE)
output, err = p.communicate(b"set q = mx\npython.org\nexit\n")
print(output.decode("gbk"))
print("Exit code:", p.returncode)

# 结果输出:
$ nslookup
默认服务器:  cache-a.guangzhou.gd.cn
Address:  202.96.128.86
> Unrecognized command: set q = mx
> 服务器:  cache-a.guangzhou.gd.cn
Address:  202.96.128.86
名称:    python.org
Address:  138.197.63.241

Exit code: 0

4.进程间通信

# 在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据
# queue_test.py文件,交互下python queue_test.py
from multiprocessing import Process, Queue
import os, time, random
def write(q):
    print("Process to write:%s" % os.getpid())
    for value in ["W", "I", "L", "L", "A", "R", "D"]:
        print("Put %s to queue..." % value)
        q.put(value)
        time.sleep(random.random())
def read(q):
    print("Process to read:%s" % os.getpid())
    while True:
        value = q.get(True)
        print("Get %s from queue." % value)
if __name__ == "__main__":
    # 父进程创建Queue,并传给各个子进程
    q = Queue()
    pw = Process(target = write, args = (q,))
    pr = Process(target = read, args = (q,))
    # 启动子进程pw,写入
    pw.start()
    # 启动子进程pr,读取
    pr.start()
    # 等待pw结束
    pw.join()
    # pr进程是死循环,无法等待其结束,需要强行终止
    pr.terminate()

# 结果输出:
Process to write:15720
Process to read:21524
Put W to queue...
Get W from queue.
Put I to queue...
Get I from queue.
Put L to queue...
Get L from queue.
Put L to queue...
Get L from queue.
Put A to queue...
Get A from queue.
Put R to queue...
Get R from queue.
Put D to queue...
Get D from queue.

5.多线程

# 线程库:_thread和threading
# 启动一个线程:即把一个函数传入并创建一个Thread实例,然后调用start()开始执行
# 任何进程默认启动一个线程,该线程称为主线程,主线程可以启动新的线程
# current_thread()函数:返回当前线程的实例;
# 主线程实例名字:MainThread;
# 子线程名字的创建时指定,如果不指定,则自动给线程命名为Thread-1、Thread-2...
import time, threading
def loop():
    print("Thread %s is running..." % threading.current_thread().name)
    n = 0
    while n < 5:
        n = n + 1
        print("Thread %s >>> %s" % (threading.current_thread().name, n))
        time.sleep(1)
    print("Thread %s ended." % threading.current_thread().name)
print("Thread %s is running..." % threading.current_thread().name)
thread1 = threading.Thread(target = loop, name = "LoopThread")
thread1.start()
thread1.join()
print("Thread %s ended." % threading.current_thread().name)

# 结果输出:
Thread MainThread is running...
Thread LoopThread is running...
Thread LoopThread >>> 1
Thread LoopThread >>> 2
Thread LoopThread >>> 3
Thread LoopThread >>> 4
Thread LoopThread >>> 5
Thread LoopThread ended.
Thread MainThread ended.

6.Lock

# 多进程:同一个变量,各自有一份拷贝存在于每个进程中,互不影响;
# 多线程:所有变量由所有线程共享,任何一个变量可以被任何一个线程修改;
# 多线程同时操作一个变量
# 多运行几次,发现结果不为0
import time, threading
balance = 0
def change_it(n):
    global balance
    balance = balance + n
    balance = balance - n
def run_thread(n):
    # 线程交替执行,balance结果不一定为0
    for i in range(2000000):
        change_it(n)
thread1 = threading.Thread(target = run_thread, args = (5,))
thread2 = threading.Thread(target = run_thread, args = (8,))
thread1.start()
thread2.start()
thread1.join()
thread2.join()
print(balance)
# 结果输出:
# 5(各自不同)
# 确保balance计算正确,需要给change_it()上一把锁
# 当线程开始执行change_it()时,该线程获得锁,其他线程不能同时执行change_it(),
# 只能等待,直到锁被释放,获得该锁后才能改;
# 通过threading.Lock()创建锁
import time, threading
balance = 0
lock = threading.Lock()
def change_it(n):
    global balance
    balance = balance + n
    balance = balance - n
def run_thread(n):
    for i in range(2000000):
        lock.acquire()
        try:
            change_it(n)
        finally:
            # 释放锁
            lock.release()
thread1 = threading.Thread(target = run_thread, args = (5,))
thread2 = threading.Thread(target = run_thread, args = (8,))
thread1.start()
thread2.start()
thread1.join()
thread2.join()
print(balance)
# 结果输出:
# 0

7.ThreadLocal

# 多线程环境下,每个线程有自己的数据;
# 一个线程使用自己的局部变量比使用全局变量好;
import threading
# 创建全局ThreadLocal对象
local_school = threading.local()
def process_student():
    # 获取当前线程关联的student
    std = local_school.student
    print("Hello,%s (in %s)" % (std, threading.current_thread().name))
def process_thread(name):
    # 绑定ThreadLocal的student
    local_school.student = name
    process_student()
thread1 = threading.Thread(target = process_thread, args = ("Willard",), name = "Thread-1")
thread2 = threading.Thread(target = process_thread, args = ("WenYu",), name = "Thread-2")
thread1.start()
thread2.start()
thread1.join()
thread2.join()

# 结果输出:
# Hello,Willard (in Thread-1)
# Hello,WenYu (in Thread-2)

8.进程VS线程

# 进程和线程优缺点:
# 1.要实现多任务,会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,
# 在多任务环境下,通常是一个Master,多个Worker;
#     a.如果使用多进程实现Master-Worker,主进程即Master,其他进程即Worker;
#     b.如果使用多线程实现Master-Worker,主线程即Master,其他线程即Worker;
# 2.多进程优点:稳定性高,一个子进程崩溃不会影响主进程和其他子进程;
# 3.多进程缺点:创建进程的代价大,操作系统能同时运行的进程数有限;
# 4.多线程缺点:任何一个线程崩溃,可能直接造成整个进程崩溃;
# 线程切换:
# 1.依次完成任务的方式称为单任务模型,或批处理任务模型;
# 2.任务1先做n分钟,切换到任务2做n分钟,再切换到任务3做n分钟,依此类推,称为多任务模型;
# 计算密集型 VS IO密集型
# 1.计算密集型任务:要进行大量的计算,消耗CPU资源,如:对视频进行高清解码等;
# 2.IO密集型任务:涉及到网络、磁盘IO的任务,均为IO密集型任务;
# 3.IO密集型任务消耗CPU少,大部分时间在等待IO操作完成;
# 异步IO
# 1.事件驱动模型:用单进程单线程模型来执行多任务;
# 2.Python语言中,单线程的异步编程模型称为协程;

9.分布式进程

"""
实例:
有一个通过Queue通信的多进程程序在同一机器上运行,但现在处理任务的进程任务繁重,
希望把发送任务的进程和处理任务的进程发布到两台机器上;
"""
# task_master_test.py
# 交互环境中:python task_master_test.py
import random, time, queue
from multiprocessing.managers import BaseManager
# 发送任务的队列
task_queue = queue.Queue()
# 接收结果的队列
result_queue = queue.Queue()
def return_task_queue():
    global task_queue
    return task_queue
def return_result_queue():
    global task_queue
    return task_queue
# 从BaseManager继承的QueueManager
class QueueManager(BaseManager):
    pass
if __name__ == "__main__":
    # 把两个Queue注册到网络上,callable参数关联Queue对象
    QueueManager.register("get_task_queue", callable = return_task_queue)
    QueueManager.register("get_result_queue", callable = return_result_queue)
    # 绑定端口5000,设置验证码"Willard"
    manager = QueueManager(address = ("127.0.0.1", 5000), authkey = b"Willard")
    # 启动Queue
    manager.start()
    # 获得通过网络访问的Queue对象
    task = manager.get_task_queue()
    result = manager.get_result_queue()
    # 放任务进去
    for i in range(10):
        n = random.randint(0, 10000)
        print("Put task %d..." % n)
        task.put(n)
    # 从result队列读取结果
    print("Try get results...")
    for i in range(10):
        r = result.get(timeout = 10)
        print("Result:%s" % r)
    # 关闭
    manager.shutdown()
    print("Master Exit.")
# task_worker_test.py文件
# 交互环境python task_worker_test.py
import time, sys, queue
from multiprocessing.managers import BaseManager
# 创建QueueManager
class QueueManager(BaseManager):
    pass
QueueManager.register("get_task_queue")
QueueManager.register("get_result_queue")
# 连接到服务器
server_address = "127.0.0.1"
print("Connect to server %s..." % server_address)
# 端口和验证码
m = QueueManager(address = (server_address, 5000), authkey = b"Willard")
# 网络连接
m.connect()
# 获取Queue对象
task = m.get_task_queue()
result = m.get_result_queue()
# 从task队列取任务,把结果写入result队列
for i in range(10):
    try:
        n = task.get(timeout = 1)
        print("Run task %d * %d..." % (n, n))
        r = "%d * %d = %d" % (n, n, n * n)
        time.sleep(1)
        result.put(r)
    except Queue.Empty:
        print("Task queue is empty.")
print("Worker Exit.")

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注我们的更多内容!

(0)

相关推荐

  • 深入了解Python 中线程和进程区别

    目录 一.什么是进程/线程 1.引论 2.线程 3.进程 4.区别 5.使用 二.多线程使用 1.常用方法 2.常用参数 3.多线程的应用 3.1重写线程法 3.2直接调用法 4.线程间数据的共享 三.多进程使用 1.简介 2.应用 2.1重写进程法 2.2直接调用法 3.进程之间的数据共享 3.1Lock方法 3.2Manager方法 四.池并发 1.语法 2.获取CPU数量 3.线程池 3.进程池 一. 什么是进程 / 线程 1. 引论 众所周知,CPU是计算机的核心,它承担了所有的计算任务

  • python 多线程与多进程效率测试

    目录 1.概述 2.代码练习 3.运行结果 1.概述 在Python中,计算密集型任务适用于多进程,IO密集型任务适用于多线程 正常来讲,多线程要比多进程效率更高,因为进程间的切换需要的资源和开销更大,而线程相对更小,但是我们使用的Python大多数的解释器是Cpython,众所周知Cpython有个GIL锁,导致执行计算密集型任务时多线程实际只能是单线程,而且由于线程之间切换的开销导致多线程往往比实际的单线程还要慢,所以在 python 中计算密集型任务通常使用多进程,因为各个进程有各自独立的

  • Python的进程,线程和协程实例详解

    目录 相关介绍 实验环境 进程 多进程 用进程池对多进程进行操作 线程 使用_thread模块实现 使用threading模块实现 协程 使用asyncio模块实现 总结 相关介绍 Python是一种跨平台的计算机程序设计语言.是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言.最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的.大型项目的开发. 例如 实验环境 Python 3.x (面向对象的高级语言) Multiprocessin

  • 详解Python中的进程和线程

    进程是什么? 进程就是一个程序在一个数据集上的一次动态执行过程.进程一般由程序.数据集.进程控制块三部分组成.我们编写的程序用来描述进程要完成哪些功能以及如何完成:数据集则是程序在执行过程中所需要使用的资源:进程控制块用来记录进程的外部特征,描述进程的执行变化过程,系统可以利用它来控制和管理进程,它是系统感知进程存在的唯一标志. 线程是什么? 线程也叫轻量级进程,它是一个基本的CPU执行单元,也是程序执行过程中的最小单元,由线程ID.程序计数器.寄存器集合和堆栈共同组成.线程的引入减小了程序并发

  • 实例详解Python的进程,线程和协程

    目录 前言 前提条件 相关介绍 实验环境 进程 多进程 用进程池对多进程进行操作 线程 使用_thread模块实现 使用threading模块实现 协程 使用asyncio模块实现 总结 前言 本文用Python实例阐述了一些关于进程.线程和协程的概念,由于水平有限,难免出现错漏,敬请批评改正. 前提条件 熟悉Python基本语法熟悉Python操作进程.线程.协程的相关库 相关介绍 Python是一种跨平台的计算机程序设计语言.是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言.最

  • python教程之进程和线程

    目录 进程和线程的区别和联系 多进程 线程池 多线程 总结 进程和线程的区别和联系 终于开始加深难度,来到进程和线程的知识点~ 单就这两个概念,就难倒过不少初学者——今天学了概念,明天就忘记:明天学了例子,又忘记了概念. 要理解进程和线程的联系和区别,我举个特简单的例子: 你的电脑有两个浏览器,一个谷歌浏览器,一个qq浏览器. 一个浏览器就是一个进程. 然后,你打开了谷歌浏览器,百度搜索了测试奇谭,又新开一个标签页,打开谭叔的文章,如下图所示: 你可以这样理解——在同一个浏览器打开的两个网页就是

  • Python3的进程和线程你了解吗

    目录 1.概述 2.多进程 3.子进程 4.进程间通信 5.多线程 6.Lock 7.ThreadLocal 8.进程VS线程 9.分布式进程 总结 1.概述 """ 基础知识: 1.多任务:操作系统可以同时运行多个任务: 2.单核CPU执行多任务:操作系统轮流让各个任务交替执行: 3.一个任务即一个进程(process),如:打开一个浏览器,即启动一个浏览器进程: 4.在一个进程内,要同时干多件事,需要同时运行多个子任务,把进程内的子任务称为"线程(Thread)

  • 对Python3之进程池与回调函数的实例详解

    进程池 代码演示 方式一 from multiprocessing import Pool def deal_task(n): n -= 1 return n if __name__ == '__main__': n = 10 p = Pool(4) for i in range(4): res = p.apply(deal_task, args=(n,)) #调用apply是一个串行的效果,任务会被进程一个一个的处理,直接得到结果 #前提是执行的任务必须要有返回值 print(res) 方式二

  • 详细介绍 进程、线程和协程的区别

    详解 进程.线程和协程的区别 首先,给出"进程.线程和协程"的特点: 进程:拥有自己独立的堆和栈,既不共享堆,也不共享栈,进程由操作系统调度: 线程:拥有自己独立的栈和共享的堆,共享堆,不共享栈,标准线程由操作系统调度: 协程:拥有自己独立的栈和共享的堆,共享堆,不共享栈,协程由程序员在协程的代码里显示调度. 接下来,以一个形象的例子,进一步讲述"进程.线程和协程"三者之间的区别: 假设有一个单核的操作系统,系统上没有其它的程序需要运行,现有两个线程 A 和 B,A

  • 深入浅析WinForm 进程、线程及区别介绍

    一.进程 进程是一个具有独立功能的程序关于某个数据集合的一次运行活动. 它可以申请和拥有系统资源,是一个动态的概念,是一个活动的实体. Process 类,用来操作进程. 命名空间:using System.Diagnostics; Process.Start("calc"); //打开计算器 Process.Start("mspaint"); //打开画图 Process.Start("iexplore" , "http://www.

  • 详解Android进程和线程

    写在前面的话 一个Android应用就是一个Linux进程,每个应用在各自的进程中运行,互不干扰,比较安全. 一个应用对应一个主线程,就是通常所说的UI线程,android遵守的就是单线程模型,所以说Ui操作不是线程安全的并且这些操作必须在UI线程中执行. 本文是对官方文档的翻译,原文链接:https://developer.android.com/guide/components/processes-and-threads.html 概述 当某个应用组件启动且该应用没有运行其他任何组件时,An

  • 简述Python中的进程、线程、协程

    进程.线程和协程之间的关系和区别也困扰我一阵子了,最近有一些心得,写一下. 进程拥有自己独立的堆和栈,既不共享堆,亦不共享栈,进程由操作系统调度. 线程拥有自己独立的栈和共享的堆,共享堆,不共享栈,线程亦由操作系统调度(标准线程是的). 协程和线程一样共享堆,不共享栈,协程由程序员在协程的代码里显示调度. 进程和其他两个的区别还是很明显的. 协程和线程的区别是:协程避免了无意义的调度,由此可以提高性能,但也因此,程序员必须自己承担调度的责任,同时,协程也失去了标准线程使用多CPU的能力. Pyt

  • java中进程与线程_三种实现方式总结(必看篇)

    一:进程与线程 概述:几乎任何的操作系统都支持运行多个任务,通常一个任务就是一个程序,而一个程序就是一个进程.当一个进程运行时,内部可能包括多个顺序执行流,每个顺序执行流就是一个线程. 进程:进程是指处于运行过程中的程序,并且具有一定的独立功能.进程是系统进行资源分配和调度的一个单位.当程序进入内存运行时,即为进程. 进程的三个特点: 1:独立性:进程是系统中独立存在的实体,它可以独立拥有资源,每一个进程都有自己独立的地址空间,没有进程本身的运行,用户进程不可以直接访问其他进程的地址空间. 2:

  • 简述Java中进程与线程的关系_动力节点Java学院整理

    概述 进程与线程,本质意义上说, 是操作系统的调度单位,可以看成是一种操作系统 "资源" .Java 作为与平台无关的编程语言,必然会对底层(操作系统)提供的功能进行进一步的封装,以平台无关的编程接口供程序员使用,进程与线程作为操作系统核心概念的一部分无疑亦是如此.在 Java 语言中,对进程和线程的封装,分别提供了 Process 和 Thread 相关的一些类.本文首先简单的介绍如何使用这些类来创建进程和线程,然后着重介绍这些类是如何和操作系统本地进程线程相对应的,给出了 Java

  • C#网络编程基础之进程和线程详解

    在C#的网络编程中,进程和线程是必备的基础知识,同时也是一个重点,所以我们要好好的掌握一下. 一:概念 首先我们要知道什么是"进程",什么是"线程",好,查一下baike. 进程:是一个具有一定独立功能的程序关于某个数据集合的一次活动.它是操作系统动态执行的基本单元, 在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元. 线程:是"进程"中某个单一顺序的控制流. 关于这两个概念,大家稍微有个印象就行了,防止以后被面试官问到. 二:进程

  • C#获取进程或线程相关信息的方法

    本文实例讲述了C#获取进程或线程相关信息的方法.分享给大家供大家参考.具体实现方法如下: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Diagnostics; namespace ConsoleApp { class ProcessDo { /// <summary> /// 获取进程相关信息 /// </summary> pub

随机推荐