详解numpy.ndarray.reshape()函数的参数问题

我们知道numpy.ndarray.reshape()是用来改变numpy数组的形状的,但是它的参数会有一些特殊的用法,这里我们进一步说明一下。代码如下:

import numpy as np

class Debug:
  def __init__(self):
    self.array1 = np.ones(6)

  def mainProgram(self):
    print("The value of array1 is: ")
    print(self.array1)
    print("The array2 is: ")
    array2 = self.array1.reshape(2, 3)
    print(array2)

if __name__ == '__main__':
  main = Debug()
  main.mainProgram()
"""
The value of array1 is:
[1. 1. 1. 1. 1. 1.]
The array2 is:
[[1. 1. 1.]
 [1. 1. 1.]]
"""

这里我们看到我们将一个长度为6的一维数组变成了一个尺寸为(2, 3)的二维数组,这里的2代表2行,对应y轴,3代表3列,对应x轴。

然而有时候我们会在reshape中使用到-1这个参数,当使用这个参数时,会将数组重新塑形变得十分简单。代码如下:

class Debug:
  def __init__(self):
    self.array1 = np.ones(6)

  def mainProgram(self):
    print("The value of array1 is: ")
    print(self.array1)
    print("The array2 is: ")
    array2 = self.array1.reshape(-1, 3)
    print(array2)

if __name__ == '__main__':
  main = Debug()
  main.mainProgram()
"""
The value of array1 is:
[1. 1. 1. 1. 1. 1.]
The array2 is:
[[1. 1. 1.]
 [1. 1. 1.]]
"""

我们可以看到当我们将reshape的第一个参数变为-1时,我们仍旧获得了一个尺寸为(2, 3)的数组,其实在这里,-1代表的意思为6 / 3 =2,其中6是被塑形一维数组的长度,3是我们指定的二维数组一个方向的维度。这样的好处就是当数据量比较大时,我们在二维数组重新塑形时只需要指定一个维度上的尺寸,另一个维度上的尺寸python会自动为我们计算。

到此这篇关于详解numpy.ndarray.reshape()函数的参数问题的文章就介绍到这了,更多相关numpy.ndarray.reshape()函数参数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • numpy库ndarray多维数组的维度变换方法(reshape、resize、swapaxes、flatten)

    numpy库对多维数组有非常灵巧的处理方式,主要的处理方法有: .reshape(shape) : 不改变数组元素,返回一个shape形状的数组,原数组不变 .resize(shape) : 与.reshape()功能一致,但修改原数组 In [22]: a = np.arange(20) #原数组不变 In [23]: a.reshape([4,5]) Out[23]: array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14

  • 详解numpy.ndarray.reshape()函数的参数问题

    我们知道numpy.ndarray.reshape()是用来改变numpy数组的形状的,但是它的参数会有一些特殊的用法,这里我们进一步说明一下.代码如下: import numpy as np class Debug: def __init__(self): self.array1 = np.ones(6) def mainProgram(self): print("The value of array1 is: ") print(self.array1) print("Th

  • 详解NumPy中的线性关系与数据修剪压缩

    目录 摘要 一.用线性模型预测价格 二.趋势线 三.数组的修剪和压缩 四.阶乘 摘要 总结股票均线计算原理--线性关系,也是以后大数据处理的基础之一,NumPy的 linalg 包是专门用于线性代数计算的.作一个假设,就是一个价格可以根据N个之前的价格利用线性模型计算得出. 前一篇,在计算均线,指数均线时,分别计算了不同的权重,比如 和 都是按不同的计算方法来计算出相关的权重,一个股价可以用之前股价的线性组合表示出来,也即,这个股价等于之前的股价与各自的系数相乘后再做加和的结果,但是,这些系数是

  • 详解Numpy扩充矩阵维度(np.expand_dims, np.newaxis)和删除维度(np.squeeze)的方法

    在操作矩阵的时候,不同的接口对于矩阵的输入维度要求不同,输入可能为1-D,2-D,3-D等等.下面介绍一下使用Numpy进行矩阵维度变更的相关方法.主要包括以下几种: 1.np.newaxis扩充矩阵维度 2.np.expand_dims扩充矩阵维度 3.np.squeeze删除矩阵中维度大小为1的维度 np.newaxis,np.expand_dims扩充矩阵维度: import numpy as np x = np.arange(8).reshape(2, 4) print(x.shape)

  • 详解Kotlin 高阶函数 与 Lambda 表达式

    详解Kotlin 高阶函数 与 Lambda 表达式 高阶函数(higher-order function)是一种特殊的函数, 它接受函数作为参数, 或者返回一个函数. 这种函数的一个很好的例子就是 lock() 函数, 它的参数是一个锁对象(lock object), 以及另一个函数, 它首先获取锁, 运行对象函数, 然后再释放锁: fun <T> lock(lock: Lock, body: () -> T): T { lock.lock() try { return body()

  • 详解C语言gets()函数与它的替代者fgets()函数

    在c语言中读取字符串有多种方法,比如scanf() 配合%s使用,但是这种方法只能获取一个单词,即遇到空格等空字符就会返回.如果要读取一行字符串,比如: I love BIT 这种情况,scanf()就无能为力了.这时我们最先想到的是用gets()读取. gets()函数从标准输入(键盘)读入一行数据,所谓读取一行,就是遇到换行符就返回.gets()函数并不读取换行符'\n',它会吧换行符替换成空字符'\0',作为c语言字符串结束的标志. gets()函数经常和puts()函数配对使用,puts

  • 详解Python高阶函数

    本文要点 1.什么是高阶函数 2.python中有哪些常用的高阶函数 什么是高阶函数? 在了解什么是高阶函数之前,我们来看几个小例子.我们都知道在 python 中一切皆对象,函数也不例外.比如求绝对值函数 abs,我们可以用一个变量 f 指向 abs 函数,那么当调用 f() 的时候可以得到和 abs() 一样的效果,这说明变量可以指向函数! 同理我们将 abs 指向另一个函数 abs = len,那么 abs 将不再是求绝对值的函数了,abs指向的是求长度的 len 函数.这说明函数名其实就

  • 详解JavaScript 高阶函数

    高阶函数简介 高阶函数 的英文名叫 Higher-Order Function ,是 函数式编程 中的一种.他的表现形式往往是通过把函数作为参数传入另一个函数,或者将函数作为另一个函数的返回值返回.在实际开发业务中, 高阶函数往往可以抽象我们的代码 ,将我们的命令式编程转换为复用性更高级的函数式编程,从而 提升我们的代码质量 . 下面拿3个面试中常问的高阶函数举例子,希望看完以后能够提升大家对JS的理解,提高我们的代码质量. chat is cheap,show you my code~ Arr

  • 详解C++ cin.getline函数

    cin 虽然可以使用 cin 和 >> 运算符来输入字符串,但它可能会导致一些需要注意的问题. 当 cin 读取数据时,它会传递并忽略任何前导白色空格字符(空格.制表符或换行符).一旦它接触到第一个非空格字符即开始阅读,当它读取到下一个空白字符时,它将停止读取. 例: // This program illustrates a problem that can occur if // cin is used to read character data into a string object

  • 详解 MySQL中count函数的正确使用方法

    1. 描述 在MySQL中,当我们需要获取某张表中的总行数时,一般会选择使用下面的语句 select count(*) from table; 其实count函数中除了*还可以放其他参数,比如常数.主键id.字段,那么它们有什么区别?各自效率如何?我们应该使用哪种方式来获取表的行数呢? 当搞清楚count函数的运行原理后,相信上面几个问题的答案就会了然于胸. 2. 表结构 为了解决上述的问题,我创建了一张 user 表,它有两个字段:主键id和name,后者可以为null,建表语句如下. CRE

  • 详解Python的lambda函数用法

    lambda函数用法 lambda非常重要的一个定义.lambda在[运行时]才绑定,[不是]在定义的时候绑定.下面这个列子: 本意想:让X分别与0到1的数相加.x+0,x+1,x+2,x+3 实际运行结果是: 0 0 0 0 原因就是上面提到的,运行时才绑定.先运行的for循环,无法捕捉到循环. func = [lambda x: x + n for n in range(4)] # x+n,n是从0到3 For循环,x+0,x+1,x+3 for f in func: print(f(0))

随机推荐