C语言异常处理机制案例讲解

异常处理机制:setjmp()函数与longjmp()函数

  C标准库提供两个特殊的函数:setjmp() 及 longjmp(),这两个函数是结构化异常的基础,正是利用这两个函数的特性来实现异常。
所以,异常的处理过程可以描述为这样:
首先设置一个跳转点(setjmp() 函数可以实现这一功能),然后在其后的代码中任意地方调用 longjmp() 跳转回这个跳转点上,以此来实现当发生异常时,转到处理异常的程序上,在其后的介绍中将介绍如何实现。
setjmp() 为跳转返回保存现场并为异常提供处理程序,longjmp() 则进行跳转(抛出异常),setjmp() 与 longjmp() 可以在函数间进行跳转,这就像一个全局的 goto 语句,可以跨函数跳转。
举个例子,程序在 main() 函数内使用 setjmp() 设置跳转,并调用另一函数A,函数A内调用B,B抛出异常(调用longjmp() 函数),则程序直接跳回到 main() 函数内使用 setjmp() 的地方返回,并且返回一个值。

-------------------------------------------------------------------------------------------------------------------------

jmp_buf 异常结构

使用 setjmp() 及 longjmp() 函数前,需要先认识一下 jmp_buf 异常结构。jmp_buf 将使用在 setjmp() 函数中,用于保存当前程序现场(保存当前需要用到的寄存器的值),jmp_buf 结构在 setjmp.h 文件内声明:

typedef struct
{
unsigned j_sp; // 堆栈指针寄存器
unsigned j_ss; // 堆栈段
unsigned j_flag; // 标志寄存器
unsigned j_cs; // 代码段
unsigned j_ip; // 指令指针寄存器
unsigned j_bp; // 基址指针
unsigned j_di; // 目的指针
unsigned j_es; // 附加段
unsigned j_si; // 源变址
unsigned j_ds; // 数据段
} jmp_buf;

jmp_buf 结构存放了程序当前寄存器的值,以确保使用 longjmp() 后可以跳回到该执行点上继续执行。

-------------------------------------------------------------------------------------------------------------------------

  setjmp() 与 longjmp() 函数详细说明

setjmp() 与 longjmp() 函数原型如下:

  void _Cdecl longjmp(jmp_buf jmpb, int retval);

  int _Cdecl setjmp(jmp_buf jmpb);

_Cdecl 声明函数的参数使用标准C的进栈方式(由右向左)压栈,_Cdecl 是C语言的一种调用约定,除此以外,PASCAL 也是调用约定之一。C标准调用约定(_Cdecl)所声明的函数不自动清除堆栈,这一事务由调用者自行负责——这也是C可以支持不固定个数的参数的原因。此外,这一调用约定将在函数名前添加一个下划线字符,如某一函数声明为:

int cdecl DoSomething(void);

编译时将自动为 DoSomething 加上下划线前缀,即函数名变为: _DoSomething。

setjmp() 与 longjmp() 函数都使用了 jmp_buf 结构作为形参,它们的调用关系是这样的:

首先调用 setjmp() 函数来初始化 jmp_buf 结构变量 jmpb,将当前CPU中的大部分影响到程序执行的寄存器的值存入 jmpb,为 longjmp() 函数提供跳转,setjmp() 函数是一个有趣的函数,它能返回两次,它应该是所有库函数中唯一一个能返回两次的函数,第一次是初始化时,返回零,第二次遇到 longjmp() 函数调用后,longjmp() 函数使 setjmp() 函数发生第二次返回,返回值由 longjmp() 的第二个参数给出(整型,这时不应该再返回零)。

在使用 setjmp() 初始化 jmpb 后,可以其后的程序中任意地方使用 longjmp() 函数跳转会 setjmp() 函数的位置,longjmp() 的第一个参数便是 setjmp() 初始化的 jmpb,若想跳转回刚才设置的 setjmp() 处,则 longjmp() 函数的第一个参数是 setjmp() 所初始化的 jmpb 这个异常,这也说明一件事,即 jmpb 这个异常,一般需要定义为全局变量,否则,若是局部变量,当跨函数调用时就几乎无法使用(除非每次遇到函数调用都将 jmpb 以参数传递,然而明显地,是不值得这样做的);longjmp() 函数的第二个参数是传给 setjmp() 的第二次返回值,这在介绍 setjmp() 函数时已经介绍过。

异常处理过程

先来对比(参考)一下 C++ 的异常处理,C++ 在语言层上便添加了异常处理机制,使用 try 块来包含那些可能出现错误的代码,你可以在 try 块代码中抛出异常,C++ 使用 throw 来抛出异常。抛出异常后,将转到异常处理程序中执行,C++ 使用 catch 块来包含那些处理异常的代码,catch 块可以接收不同类型的异常。需要说明的是,throw 一般不在 try 块内的代码中抛出异常,try 块内的代码调用了别的函数,如函数A,函数A 又调用了函数 B,throw 可以在函数B中抛出异常,或者更深的函数调用层,无论如何,只要有异常抛出,程序将转到 catch 处执行。

C中如何实现,或者明确地说是模拟这一功能?

下面介绍的是一些简单的方法。

现在假设 longjmp() 第二个值为1,即 setjmp() 第二次将返回1。我们使用一组简单的宏来替代 setjmp() 和 longjmp() 以便使用:

首先定义一个全局的异常:

jmp_buf Jump_Buffer;

因为 setjmp() 第一次调用初始化后返回0,第二次返回非0,可以这样定义一个宏使得它功能接近于 C++ 的 try。

#define try if(!setjmp(Jump_Buffer))

当 setjmp() 函数第一次0 时,取非为真,则执行 try 块内的代码,如:

try{

Test();

}

当因为调用 longjmp() 抛出异常而导致 setjmp() 第二次返回时(程序将会转到 setjmp() 函数处返回,这时,这时应该执行的是异常处理代码。longjmp() 使 setjmp() 函数返回非0,if(!setjmp(JumpBuffer)) 中将值取非则为假,是以,异常处理放在其后应该使用一个 else:

#define catch else

如此看起来便跟 C++ 相似了,setjmp() 函数的第二次返回导致 if() 中表达式值为假,刚好使 catch 块得以执行,如:

try{

Test();

}catch{

puts("Error");

}

实现如 C++ 的 throw 语句,事实上以宏替换 longjmp(jmp_buf, int) 的调用:

#define throw longjmp(Jump_Buffer, 1)

下面的例程解释如何使用这些宏:
-------------------------------------------------------------------------------------------------------------------------

#include"stdio.h"
#include"conio.h"
#include"setjmp.h"
jmp_buf Jump_Buffer;
#define try if(!setjmp(Jump_Buffer))
#define catch else
#define throw longjmp(Jump_Buffer,1)
int Test(int T)
{
    if(T>100)
        throw;
    else
          puts("OK.");
    return 0;
}
int Test_T(int T)
{
    Test(T);
    return 0;
}
int main()
{
    int T;
    try{
          puts("Input a value:");
          scanf("%d",&T);
          T++;
          Test_T(T);
      } catch{
          puts("Input Error!");
      }
    getch();
    return 0;
}

到此这篇关于C语言异常处理机制案例讲解的文章就介绍到这了,更多相关C语言异常处理机制内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C语言链表实现贪吃蛇小游戏

    本文实例为大家分享了C语言链表实现贪吃蛇游戏的具体代码,供大家参考,具体内容如下 项目名称: 贪吃蛇小游戏 运行环境: Linux 编程语言: C语言 主要语法: 链表,指针,函数 备注: 游戏中可选不同难度模式, 1.简易--Easy--速度慢,可穿墙,可触碰自己 2.困难--Hard--速度快,不可穿墙,不可触碰自己 3.自动--Auto--外挂模式,自动吃食,直到胜利 代码 贪吃蛇小游戏代码: #include <curses.h> #include <stdlib.h> #

  • c语言简单实现文件 r/w 操作方法

    数据的输入和输出几乎伴随着每个 C 语言程序,所谓输入就是从"源端"获取数据,所谓输出可以理解为向"终端"写入数据.这里的源端可以是键盘.鼠标.硬盘.光盘.扫描仪等输入设备,终端可以是显示器.硬盘.打印机等输出设备.在 C 语言中,把这些输入和输出设备也看作"文件". 文件及其分类 计算机上的各种资源都是由操作系统管理和控制的,操作系统中的文件系统,是专门负责将外部存储设备中的信息组织方式进行统一管理规划,以便为程序访问数据提供统一的方式. 文件

  • C语言版扫雷游戏

    本文实例为大家分享了C语言版扫雷游戏的具体代码,供大家参考,具体内容如下 1.思路 一.创建二维数组,来表示地图 每一个格子要表示的信息: 1.未翻开状态(草地)和已翻开状态(数字) 2.该格子是地雷或者不是地雷(1表示是地雷,0表示不是) 二.使用两个二维数组来分别表示以上的两种状态 第一个二维数组 char showMap[9][9];表示每个格子的翻开和未翻开状态 表示未翻开,字符'0'-'8'表示已翻开的数字 第二个二维数组 char mineMap[9][9];表示每个格子是否是地雷

  • C语言中程序如何调用Python脚本

    有时候在写C语言程序的时候又想利用一下python强大的模块,于是C与python的混合编程便应运而生. 下面简单说说在C语言编译环境中调用python脚本文件的基础应用. 一.环境配置 以vs2017为例. 0x00 平台 首先你要知道你电脑上安装的python环境是64位还是32位,vs的编译平台需要与python环境一致. 比如我的python环境是64位,vs工程就要配置成x64. 右键点击你的解决方案,点击属性, 0x01 添加 包含目录 和 库目录 在属性窗口双击"VC++ Dire

  • C语言实现链栈的步骤

    链栈图解 链栈的常规操作 /********************* 链栈的常规操作 ****************************/ LinkStack InitLinkStack(); // 初始化链栈 int StackEmpty(); // 判断链栈空 int StackLength(); // 求链栈长(链栈元素个数) int Push(); // 入栈 压栈 ElemType Pop(); // 出栈 弹栈 void DestroyStack(); // 销毁链栈 /**

  • 详解C语言实现空间索引四叉树

    前言 作为程序员,应该都对二叉树都不陌生,我们都知道二叉树的变体二叉查找树,非常适合用来进行对一维数列的存储和查找,可以达到 O(logn) 的效率:我们在用二叉查找树进行插入数据时,根据一个数据的值和树结点值的对比,选择二叉树的两个叉之一向下,直到叶子结点,查找时使用二分法也可以迅速找到需要的数据. 但二叉树只支持一维数据,如一个标量数值,对地图上的位置点这种有xy两个方向上的信息却无能为力,那么是否有一种树能够支持二维数据的快速查询呢? 四叉树 介绍 四元树又称四叉树是一种树状数据结构,在每

  • C语言异常处理机制案例讲解

    异常处理机制:setjmp()函数与longjmp()函数 C标准库提供两个特殊的函数:setjmp() 及 longjmp(),这两个函数是结构化异常的基础,正是利用这两个函数的特性来实现异常. 所以,异常的处理过程可以描述为这样: 首先设置一个跳转点(setjmp() 函数可以实现这一功能),然后在其后的代码中任意地方调用 longjmp() 跳转回这个跳转点上,以此来实现当发生异常时,转到处理异常的程序上,在其后的介绍中将介绍如何实现. setjmp() 为跳转返回保存现场并为异常提供处理

  • PHP反射机制案例讲解

    简介 就算是类成员定义为private也可以在外部访问,不用创建类的实例也可以访问类的成员和方法. PHP自5.0版本以后添加了反射机制,它提供了一套强大的反射API,允许你在PHP运行环境中,访问和使用类.方法.属性.参数和注释等,其功能十分强大,经常用于高扩展的PHP框架,自动加载插件,自动生成文档,甚至可以用来扩展PHP语言.由于它是PHP內建的oop扩展,为语言本身自带的特性,所以不需要额外添加扩展或者配置就可以使用.更多内容见官方文档. 反射类型 PHP反射API会基于类,方法,属性,

  • Java之类加载机制案例讲解

    1.类加载 <1>.父子类执行的顺序 1.父类的静态变量和静态代码块(书写顺序) 2.子类的静态变量和静态代码块(书写顺序) 3.父类的实例代码块(书写顺序) 4.父类的成员变量和构造方法 5.子类的实例代码块 6.子类的成员变量和构造方法 <2>类加载的时机 如果类没有进行初始化,则需要先进行初始化,虚拟机规范则是严格规定有且只有5种情况必须先对类进行初始化(而加载,验证,准备要在这个之前开始) 1.创建类的实例(new的方式),访问某个类的静态变量,或者对该静态变量赋值,调用类

  • GO语言异常处理机制panic和recover分析

    本文实例分析了GO语言异常处理机制panic和recover.分享给大家供大家参考.具体如下: Golang 有2个内置的函数 panic() 和 recover(),用以报告和捕获运行时发生的程序错误,与 error 不同,panic-recover 一般用在函数内部.一定要注意不要滥用 panic-recover,可能会导致性能问题,我一般只在未知输入和不可靠请求时使用. golang 的错误处理流程:当一个函数在执行过程中出现了异常或遇到 panic(),正常语句就会立即终止,然后执行 d

  • C语言 socketpair用法案例讲解

    socketpair()函数的声明: #include <sys/types.h> #include <sys/socket.h> int socketpair(int d, int type, int protocol, int sv[2]): socketpair()函数用于创建一对无名的.相互连接的套接子.  如果函数成功,则返回0,创建好的套接字分别是sv[0]和sv[1]:否则返回-1,错误码保存于errno中. 基本用法:  这对套接字可以用于全双工通信,每一个套接字既

  • PHP中的异常处理机制深入讲解

    1.异常概述 异常(Exception)是一种错误处理机制,用于在指定的错误发生时改变脚本的正常流程. 当异常被触发时,当前代码状态被保存,代码执行被切换到预定义的异常处理器函数(如果有) 根据情况,处理器也许会从保存的代码状态重新开始执行代码,终止脚本执行,或从代码中另外的位置继续执行脚本 2.异常的基本使用 当异常被抛出时,其后的代码不会继续执行,PHP 会尝试查找匹配的 "catch" 代码块. 如果异常没有被捕获,而且又没用使用 set_exception_handler()

  • Java插件扩展机制之SPI案例讲解

    目录 什么是SPI 与 接口类-实现类 提供的RPC 方式有什么区别? 假设我们需要实现RPC,是怎么做的? 那RPC究竟跟SPI什么关系? SPI的应用场景 怎么实现一个SPI? 中间件是怎么实现SPI的? Apollo-Client中的实现 JDBC中的实现 什么是SPI SPI ,全称为 Service Provider Interface,是一种服务发现机制.其为框架提供了一个对外可扩展的能力. 与 接口类-实现类 提供的RPC 方式有什么区别? 传统的接口类实现形式为如下 public

  • Go语言异常处理案例解析

    异常处理 程序运行时,发生的不被期望的事件,它阻止了程序按照程序员的预期正常执行,这就是异常 golang中提供了两种处理异常的方式 一种是程序发生异常时, 将异常信息反馈给使用者 一种是程序发生异常时, 立刻退出终止程序继续运行 打印异常信息 Go语言中提供了两种创建异常信息的方式 方式一: 通过fmt包中的Errorf函数创建错误信息, 然后打印 package main import "fmt" func main() { // 1.创建错误信息 var err error =

  • Go语言运算符案例讲解

    算数运算符 算数运算符和C语言几乎一样 运算符 描述 实例 + 相加 A + B - 相减 A - B * 相乘 A * B / 相除 B / A % 求余 B % A ++ 自增 A++ – 自减 A– 注意点: 只有相同类型的数据才能进行运算 package main import "fmt" int main(){ var num1 int32 = 10 //var num2 int64 = num1 // 类型不同不能进行赋值运算 var num2 int64 = int64(

  • C语言指针引用数组案例讲解

    前言:C语言中指针玩的是什么,是内存,要想学好指针的小伙伴们要先对数据在内存中是怎么玩的做一番了解~       当在程序中定义一个变量时,系统会根据其数据类型为其开辟内存空间,例如Visual C++为整型变量分配四个字节的空间,为单精度浮点型变量分配四个字节,为字符型变量分配一个字节,内存中每个字节都有自己独立且唯一的一个编号,这就是地址 ,如下图,系统为变量i分配了2000~2004的存储单元. _访问变量的方式_有如下图两种: 第一种直接访问方式,直接通过变量名访问,变量名与地址有一一对

随机推荐