Python爬虫爬取疫情数据并可视化展示

目录
  • 知识点
  • 开发环境
  • 爬虫完整代码
    • 导入模块
    • 分析网站
    • 发送请求
    • 获取数据
    • 解析数据
    • 保存数据
  • 数据可视化
    • 导入模块
    • 读取数据
    • 死亡率与治愈率
    • 各地区确诊人数与死亡人数情况

知识点

  1. 爬虫基本流程
  2. json
  3. requests 爬虫当中 发送网络请求
  4. pandas 表格处理 / 保存数据
  5. pyecharts 可视化

开发环境

python 3.8 比较稳定版本 解释器发行版 anaconda jupyter notebook 里面写数据分析代码 专业性

pycharm 专业代码编辑器 按照年份与月份划分版本的

爬虫完整代码

导入模块

import requests      # 发送网络请求模块
import json
import pprint        # 格式化输出模块
import pandas as pd  # 数据分析当中一个非常重要的模块

分析网站

先找到今天要爬取的目标数据

https://news.qq.com/zt2020/page/feiyan.htm#/

找到数据所在url

发送请求

url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5&_=1638361138568'
response = requests.get(url, verify=False)

获取数据

json_data = response.json()['data']

解析数据

json_data = json.loads(json_data)
china_data = json_data['areaTree'][0]['children'] # 列表
data_set = []
for i in china_data:
    data_dict = {}
    # 地区名称
    data_dict['province'] = i['name']
    # 新增确认
    data_dict['nowConfirm'] = i['total']['nowConfirm']
    # 死亡人数
    data_dict['dead'] = i['total']['dead']
    # 治愈人数
    data_dict['heal'] = i['total']['heal']
    # 死亡率
    data_dict['deadRate'] = i['total']['deadRate']
    # 治愈率
    data_dict['healRate'] = i['total']['healRate']
    data_set.append(data_dict)

保存数据

df = pd.DataFrame(data_set)
df.to_csv('data.csv')

数据可视化

导入模块

from pyecharts import options as opts
from pyecharts.charts import Bar,Line,Pie,Map,Grid

读取数据

df2 = df.sort_values(by=['nowConfirm'],ascending=False)[:9]
df2

死亡率与治愈率

line = (
    Line()
    .add_xaxis(list(df['province'].values))
    .add_yaxis("治愈率", df['healRate'].values.tolist())
    .add_yaxis("死亡率", df['deadRate'].values.tolist())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="死亡率与治愈率"),

    )
)
line.render_notebook()

 

各地区确诊人数与死亡人数情况

bar = (
    Bar()
    .add_xaxis(list(df['province'].values)[:6])
    .add_yaxis("死亡", df['dead'].values.tolist()[:6])
    .add_yaxis("治愈", df['heal'].values.tolist()[:6])
    .set_global_opts(
        title_opts=opts.TitleOpts(title="各地区确诊人数与死亡人数情况"),
        datazoom_opts=[opts.DataZoomOpts()],
        )
)
bar.render_notebook()

以上就是Python爬虫爬取疫情数据并可视化展示的详细内容,更多关于Python爬取数据 可视化展示的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python爬虫爬取全球疫情数据并存储到mysql数据库的步骤

    思路:使用Python爬虫对腾讯疫情网站世界疫情数据进行爬取,封装成一个函数返回一个    字典数据格式的对象,写另一个方法调用该函数接收返回值,和数据库取得连接后把    数据存储到mysql数据库. 一.mysql数据库建表 CREATE TABLE world( id INT(11) NOT NULL AUTO_INCREMENT, dt DATETIME NOT NULL COMMENT '日期', c_name VARCHAR(35) DEFAULT NULL COMMENT '国家'

  • Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

    运行结果(2020-2-4日数据) 数据来源 news.qq.com/zt2020/page/feiyan.htm 抓包分析 日报数据格式 "chinaDayList": [{ "date": "01.13", "confirm": "41", "suspect": "0", "dead": "1", "heal&qu

  • Python爬取腾讯疫情实时数据并存储到mysql数据库的示例代码

    思路: 在腾讯疫情数据网站F12解析网站结构,使用Python爬取当日疫情数据和历史疫情数据,分别存储到details和history两个mysql表. ①此方法用于爬取每日详细疫情数据 import requests import json import time def get_details(): url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5&callback=jQuery3410284820553141302

  • python 爬取疫情数据的源码

    疫情数据 程序源码 // An highlighted block import requests import json class epidemic_data(): def __init__(self, province): self.url = url self.header = header self.text = {} self.province = province # self.r=None def down_page(self): r = requests.get(url=url

  • Python获取江苏疫情实时数据及爬虫分析

    目录 1.引言 2.获取目标网站 3.爬取目标网站 4.解析爬取内容 4.1. 解析全国今日总况 4.2. 解析全国各省份疫情情况 4.3. 解析江苏各地级市疫情情况 5.结果可视化 6. 代码 7. 参考 1.引言 最近江苏南京.湖南张家界陆续爆发疫情,目前已波及8省22市,全国共有2个高风险地区,52个中风险地区.身在南京,作为兢兢业业的打工人,默默地成为了"苏打绿".为了关注疫情状况,今天我们用python来爬一爬疫情的实时数据. 2.获取目标网站 为了使用python来获取疫情

  • Python爬虫爬取疫情数据并可视化展示

    目录 知识点 开发环境 爬虫完整代码 导入模块 分析网站 发送请求 获取数据 解析数据 保存数据 数据可视化 导入模块 读取数据 死亡率与治愈率 各地区确诊人数与死亡人数情况 知识点 爬虫基本流程 json requests 爬虫当中 发送网络请求 pandas 表格处理 / 保存数据 pyecharts 可视化 开发环境 python 3.8 比较稳定版本 解释器发行版 anaconda jupyter notebook 里面写数据分析代码 专业性 pycharm 专业代码编辑器 按照年份与月

  • Python实现爬取天气数据并可视化分析

    目录 核心功能设计 实现步骤 爬取数据 风向风级雷达图 温湿度相关性分析 24小时内每小时时段降水 24小时累计降雨量 今天我们分享一个小案例,获取天气数据,进行可视化分析,带你直观了解天气情况! 核心功能设计 总体来说,我们需要先对中国天气网中的天气数据进行爬取,保存为csv文件,并将这些数据进行可视化分析展示. 拆解需求,大致可以整理出我们需要分为以下几步完成: 1.通过爬虫获取中国天气网7.20-7.21的降雨数据,包括城市,风力方向,风级,降水量,相对湿度,空气质量. 2.对获取的天气数

  • python爬虫爬取网页数据并解析数据

    1.网络爬虫的基本概念 网络爬虫(又称网络蜘蛛,机器人),就是模拟客户端发送网络请求,接收请求响应,一种按照一定的规则,自动地抓取互联网信息的程序. 只要浏览器能够做的事情,原则上,爬虫都能够做到. 2.网络爬虫的功能 网络爬虫可以代替手工做很多事情,比如可以用于做搜索引擎,也可以爬取网站上面的图片,比如有些朋友将某些网站上的图片全部爬取下来,集中进行浏览,同时,网络爬虫也可以用于金融投资领域,比如可以自动爬取一些金融信息,并进行投资分析等. 有时,我们比较喜欢的新闻网站可能有几个,每次都要分别

  • 利用Python爬虫爬取金融期货数据的案例分析

    目录 任务简介 解决步骤 代码实现 总结 大家好 我是政胤今天教大家爬取金融期货数据 任务简介 首先,客户原需求是获取https://hq.smm.cn/copper网站上的价格数据(注:获取的是网站上的公开数据),如下图所示: 如果以该网站为目标,则需要解决的问题是“登录”用户,再将价格解析为表格进行输出即可.但是,实际上客户核心目标是获取“沪铜CU2206”的历史价格,虽然该网站也有提供数据,但是需要“会员”才可以访问,而会员需要氪金...... 数据的价值!!! 鉴于,客户需求仅仅是“沪铜

  • Python爬取股票交易数据并可视化展示

    目录 开发环境 第三方模块 爬虫案例的步骤 爬虫程序全部代码 分析网页 导入模块 请求数据 解析数据 翻页 保存数据 实现效果 数据可视化全部代码 导入数据 读取数据 可视化图表 效果展示  开发环境 解释器版本: python 3.8 代码编辑器: pycharm 2021.2 第三方模块 requests: pip install requests csv 爬虫案例的步骤 1.确定url地址(链接地址) 2.发送网络请求 3.数据解析(筛选数据) 4.数据的保存(数据库(mysql\mong

  • Python爬虫爬取博客实现可视化过程解析

    源码: from pyecharts import Bar import re import requests num=0 b=[] for i in range(1,11): link='https://www.cnblogs.com/echoDetected/default.html?page='+str(i) headers={'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,

  • python爬虫爬取网页表格数据

    用python爬取网页表格数据,供大家参考,具体内容如下 from bs4 import BeautifulSoup import requests import csv import bs4 #检查url地址 def check_link(url): try: r = requests.get(url) r.raise_for_status() r.encoding = r.apparent_encoding return r.text except: print('无法链接服务器!!!')

  • Python实现爬虫爬取NBA数据功能示例

    本文实例讲述了Python实现爬虫爬取NBA数据功能.分享给大家供大家参考,具体如下: 爬取的网站为:stat-nba.com,这里爬取的是NBA2016-2017赛季常规赛至2017年1月7日的数据 改变url_header和url_tail即可爬取特定的其他数据. 源代码如下: #coding=utf-8 import sys reload(sys) sys.setdefaultencoding('utf-8') import requests import time import urll

随机推荐