Python+OpenCV数字图像处理之ROI区域的提取

目录
  • 1、实现原理
  • 2、使用的函数简述
  • 3、代码实现过程
    • (1)读入原始图像
    • (2)获取mask
    • (3)获取人物mask
    • (4)获取人物
    • (5)新建一张与原始图一样大小的蓝色的背景图
    • (6)得到蓝色背景的mask
  • 4、整体代码 

利用mask(掩模)技术提取纯色背景图像ROI区域中的人和物,并将提取出来的人或物添加在其他图像上。

1、实现原理

先通过cv.cvtColor()函数,将原RGB彩色图像转换为hsv色彩空间的图像,然后通过cv.inRange()函数获得ROI区域的Mask,最后利用cv.bitwise()函数提取得到ROI区域。

2、使用的函数简述

(1) cv.cvtColor(img, cv.COLOR_BGR2HSV)函数

img为要进行色彩空间转换的原图

cv.COLOR_BGR2HSV即将原图RGB色彩空间转换为HSV色彩空间

(2) cv.inRange(hsv, (h_min, s_min, v_min), (h_max, s_max, v_max))函数

cv.inRange函数通过设置不同的h、s、v的min和max阈值可以获取不同色彩的一个二值的mask图,下图为各颜色的阈值表:

(3)cv.bitwise_and(img1, img2, mask),cv.bitwise_or(img1, img2, mask)和cv.bitwise_not(img)

第一个函数为按位与操作函数,将img1和img2在mask的区域内,R,G,B三个分量分别进行按位与操作。第二个函数为按位或操作函数,将img1和img2在mask的区域内,R,G,B三个分量分别进行按位或操作。第三个函数为按位取反操作函数,将img在R,G,B三个分量分别进行按位取反操作。

(4)cv.add(img1, img2)函数

将img1和img2 进行相加操作,img1和img2的尺寸必须要相同。

3、代码实现过程

原图如下:

如图,要从图中提取出卡通人物,并将其贴在其他背景上。

(1)读入原始图像

src = cv.imread('person.jpg')
cv.imshow('src', src)

(2)获取mask

hsv = cv.cvtColor(src, cv.COLOR_BGR2HSV)       # 转换成hsv色彩风格
mask = cv.inRange(hsv, (35, 43, 46), (99, 255, 255))   # 利用inRange产生mask
cv.imshow('mask1', mask)

由于背景为绿色,可以提取绿色背景的mask,由上表可以查出绿色和青色的值,设置好参数后,就可以获得mask(白色区域才是mask区域):

注意:这里获取的mask为背景的mask,我们要获得人物的mask。

(3)获取人物mask

通过逻辑非操作取反,即可获得人物的mask区域(白色区域):

mask = cv.bitwise_not(mask)
cv.imshow('mask2', mask)

(4)获取人物

将原始图像与原始图像在mask区域进行逻辑与操作,即可获取

timg1 = cv.bitwise_and(src, src, mask=mask)
cv.imshow('timg1', timg1)

以上操作即提取了图像中的ROI(卡通人)区域,下面介绍将介绍将提取出来的图贴到其他背景上。

(5)新建一张与原始图一样大小的蓝色的背景图

background = np.zeros(src.shape, src.dtype)
background[:,:,0] = 255

(6)得到蓝色背景的mask

mask = cv.bitwise_not(mask)
dst = cv.bitwise_or(timg1, background, mask=mask)
cv.imshow('dst1', dst)

(7)将人物图贴到蓝色背景上

dst = cv.add(dst, timg1)
cv.imshow('dst2', dst)

4、整体代码 

import cv2 as cv
import numpy as np

src = cv.imread('person.jpg')
cv.imshow('src', src)
hsv = cv.cvtColor(src, cv.COLOR_BGR2HSV)       # 转换成hsv色彩风格
mask = cv.inRange(hsv, (35, 43, 46), (99, 255, 255))        # 利用inRange产生mask
cv.imshow('mask1', mask)
cv.imwrite('mask1.jpg', mask)

# 获取mask
mask = cv.bitwise_not(mask)
cv.imshow('mask2', mask)
cv.imwrite('mask2.jpg', mask)
timg1 = cv.bitwise_and(src, src, mask=mask)
cv.imshow('timg1', timg1)
cv.imwrite('timg1.jpg', timg1)

# 生成背景
background = np.zeros(src.shape, src.dtype)
background[:,:,0] = 255

# 将人物贴到背景中
mask = cv.bitwise_not(mask)
dst = cv.bitwise_or(timg1, background, mask=mask)
cv.imshow('dst1', dst)
cv.imwrite('dst1.jpg', dst)

dst = cv.add(dst, timg1)
cv.imshow('dst2', dst)
cv.imwrite('dst2.jpg', dst)

cv.waitKey(0)
cv.destroyAllWindows() 

以上就是Python+OpenCV数字图像处理之ROI区域的提取的详细内容,更多关于Python OpenCV ROI区域的提取的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python+OpenCV感兴趣区域ROI提取方法

    方法一:使用轮廓 步骤1 """src为原图""" ROI = np.zeros(src.shape, np.uint8) #感兴趣区域ROI proimage = src.copy() #复制原图 """提取轮廓""" proimage=cv2.cvtColor(proimage,cv2.COLOR_BGR2GRAY) #转换成灰度图 proimage=cv2.adaptiveThre

  • python+opencv图像分割实现分割不规则ROI区域方法汇总

    在图像分割领域,一个重要任务便是分割出感兴趣(ROI)区域.如果是简易的矩形ROI区域其实是非常容易分割的,opencv的官方python教程里也有教到最简易的矩形ROI分割(剪裁),其本质是多维数组(矩阵)的切片.但是现实情况中,ROI是不规则的多边形,也可能是曲线边界,那么该如何分割出来呢?下面总结几种思路. 可能只提供核心部分的代码示例,具体应用要结合你自己的项目来修正. 一.已知边界坐标,直接画出多边形 例:最基础的画个四边形 # 定义四个顶点坐标 pts = np.array([[10

  • Python利用ROI进行图像合成的问题小结

    之前使用seamlessClone来合成图片,但发现在两张图片的交集部分会出现一些小问题-- 需求: 假设现在有一张图片(模板)中存在两个空格可以用来填照片(如下图所示): 图中,蓝色的圆圈和黄色的圆圈为需要替换的内容,其余部分可以视为一张png图片,且通过PS可知蓝圆和黄圆的具体坐标,需要将下方的两张图片合成到上方的位置中: ROI合成圆形区域 def input_circle_img(img, file_path, img_part_name, x, y, r): for file in o

  • C语言实现opencv提取直线、轮廓及ROI实例详解

    一.Canny检测轮廓 在上一篇文章中有提到sobel边缘检测,并重写了soble的C++代码让其与matlab中算法效果一致,而soble边缘检测是基于单一阈值的,我们不能兼顾到低阈值的丰富边缘和高阈值时的边缘缺失这两个问题.而canny算子则很好的弥补了这一不足,从目前看来,canny边缘检测在做图像轮廓提取方面是最优秀的边缘检测算法. canny边缘检测采用双阈值值法,高阈值用来检测图像中重要的.显著的线条.轮廓等,而低阈值用来保证不丢失细节部分,低阈值检测出来的边缘更丰富,但是很多边缘并

  • Python+OpenCV数字图像处理之ROI区域的提取

    目录 1.实现原理 2.使用的函数简述 3.代码实现过程 (1)读入原始图像 (2)获取mask (3)获取人物mask (4)获取人物 (5)新建一张与原始图一样大小的蓝色的背景图 (6)得到蓝色背景的mask 4.整体代码  利用mask(掩模)技术提取纯色背景图像ROI区域中的人和物,并将提取出来的人或物添加在其他图像上. 1.实现原理 先通过cv.cvtColor()函数,将原RGB彩色图像转换为hsv色彩空间的图像,然后通过cv.inRange()函数获得ROI区域的Mask,最后利用

  • Python+OpenCV进行不规则多边形ROI区域提取

    多边形ROI,主要利用鼠标交互进行绘制: 1. 单击左键,选择多边形的点: 2. 单击右键,删除最近一次选择的点: 3. 单击中键,确定ROI区域并可视化. 4. 按”S“键,将多边形ROI区域的点保存到本地”config.pkl"文件中. 话不多说,以下是核心代码 import cv2 import numpy as np import joblib pts = [] # 用于存放点 # 统一的:mouse callback function def draw_roi(event, x, y,

  • 详解Python OpenCV数字识别案例

    前言 实践是检验真理的唯一标准. 因为觉得一板一眼地学习OpenCV太过枯燥,于是在网上找了一个以项目为导向的教程学习.话不多说,动手做起来. 一.案例介绍 提供信用卡上的数字模板: 要求:识别出信用卡上的数字,并将其直接打印在原图片上.虽然看起来很蠢,但既然可以将数字打印在图片上,说明已经成功识别数字,因此也可以将其转换为数字文本保存.车牌号识别等项目的思路与此案例类似. 示例: 原图 处理后的图 二.步骤 大致分为如下几个步骤: 1.模板读入 2.模板预处理,将模板数字分开,并排序 3.输入

  • OpenCV数字图像处理基于C++之图像形态学处理详解

    目录 1.图像腐蚀 1.1 CV腐蚀函数 1.2 自定义腐蚀函数 1.3 对比 2.图像膨胀 2.1 CV膨胀函数 2.2 自定义膨胀函数 2.3 对比 3.开运算 3.1 方法一 3.2 方法二 4.闭运算 4.1 方法一 4.2 方法二 4.3 morphologyEx函数介绍 5.顶帽运算 5.1 方法一 5.2 方法二 6.黑帽运算 6.1 方法一 6.2 方法二 7.形态学梯度 7.1 方法一 7.2 方法二 总结 1.图像腐蚀 ​ 原理:腐蚀用来收缩或细化二值图像中的前景,借此实现去

  • Python实现数字图像处理染色体计数示例

    目录 一.实验内容 二.实验步骤 三.代码 四.结果 一.实验内容 对于下面这幅图像,编程实现染色体计数,并附简要处理流程说明. 二.实验步骤 1.中值滤波 2.图像二值化 3.膨胀图像 4.腐蚀图像 5.计算光影背景 6.移除背景 7.检测染色体 三.代码 import cv2 import numpy as np # 计算光影背景 def calculateLightPattern(img4): h, w = img4.shape[0], img4.shape[1] img5 = cv2.b

  • Python+OpenCV六种实时图像处理详细讲解

    目录 1.导入库文件 2.设计GUI 3.调用摄像头 4.实时图像处理 4.1.阈值二值化 4.2.边缘检测 4.3.轮廓检测 4.4.高斯滤波 4.5.色彩转换 4.6.调节对比度 5.退出系统 初学OpenCV图像处理的小伙伴肯定对什么高斯函数.滤波处理.阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特点,也可对各位调参.测试有一定帮助. 1.导入库文件 这里主要使用PySimpleGUI.cv2和numpy库文件,PySimpleGUI库文件实现

  • Python图像处理之图像融合与ROI区域绘制详解

    目录 一.图像融合 二.图像ROI区域定位 三.图像属性 (1)shape (2)size (3)dtype 四.图像通道分离及合并 (1)split()函数 (2)merge()函数 五.图像类型转换 六.总结 一.图像融合 图像融合通常是指多张图像的信息进行融合,从而获得信息更丰富的结果,能够帮助人们观察或计算机处理.图5-1是将两张不清晰的图像融合得到更清晰的效果图. 图像融合是在图像加法的基础上增加了系数和亮度调节量,它与图像的主要区别如下[1-3]: 图像加法:目标图像 = 图像1 +

  • 使用Python+OpenCV进行卡类型及16位卡号数字的OCR功能

    目录 1. 效果图 2. 原理 2.1 OCR-A字体 2.2 检测过程步骤 2.3 优化 3. 源代码 这篇博客将介绍如何通过OpenCV和Python使用模板匹配执行光学字符识别(OCR).具体来说,将使用Python+OpenCV实现模板匹配算法,以自动识别卡的类型和以及16位卡号数字. 在比较数字时,模板匹配是一种非常快速的方法. 为此将图像处理管道分为4个步骤: 通过各种图像处理技术检测信用卡上四组四个数字,包括形态学操作.阈值和轮廓提取. 从四个分组中提取每个单独的数字,得到16个需

随机推荐