Python深度学习理解pytorch神经网络批量归一化

目录
  • 训练深层网络
    • 为什么要批量归一化层呢?
  • 批量归一化层
    • 全连接层
    • 卷积层
    • 预测过程中的批量归一化
    • 使用批量归一化层的LeNet
  • 简明实现
  • 争议

训练深层神经网络是十分困难的,特别是在较短的实践内使他们收敛更加棘手。在本节中,我们将介绍批量归一化(batch normalization),这是一种流行且有效的技术,可持续加速深层网络的收敛速度。在结合之后将介绍的残差快,批量归一化使得研究人员能够训练100层以上的网络。

训练深层网络

为什么要批量归一化层呢?

让我们回顾一下训练神经网络时出现的一些实际挑战:

1.数据预处理的方式通常会对最终结果产生巨大影响。回想一下我们应用多层感知机来预测房价的例子。使用真实数据时,我们的第一步是标准化输入特征,使其平均值为0,方差为1。直观地说,这种标准化可以很好地与我们地优化器配合使用,因为它可以将参数的量级进行统一。

2.对于典型的多层感知机或卷积伸进网络。当我们训练时,中间层中的变量(例如,多层感知机中的仿射变换输出)可能具有更广的变化范围:不论是沿着从输入到输出的层,跨同一层中的单元,或是随着时间的推移,模型的参数随着训练更新变幻莫测。批量归一化的发明者非正式地假设,这些变量分布中的这种偏移可能会阻碍网络的收敛。直观地说,我们可能会猜想,如果一个层的可变值是另一层的100倍,这可能需要对学习率进行补偿调整。

3.更深层的网络很复杂,容易过拟合。这意味着正则化变得更加需要。

批量归一化应用于单个可选层(也可以应用到所有层),其原理如下:
在每次训练迭代中,我们首先归一化输入,即通过减去其平均值并除以其标准差,其中两者均基于当前小批量处理。
接下来,我们应用比例系数和比例偏移。
正是由于这个基于批量统计的标准化,才有了批量标准化的名称。

这里,如果我们尝试使用大小为1的小批量应用小批量归一化,我们将无法学到任何东西。这是因为在减去均值之后,每个隐藏单元将为0。所以,只有使用足够大的小批量,批量归一化这种方法才是有效且稳定的。请注意,在应用批量归一化时,批量大小的选择可能比没有批量归一化时更重要。

现在,我们了解一下批量归一化在实践中是如何工作的。

批量归一化层

回想一下,批量归一化和其他图层之间的一个关键区别是,由于批量归一化在完整的小批次上运行,因此我们不能像以前在引入其他图层时忽略批处理的尺寸大小。我们在下面讨论这两种情况:全连接层和卷积层,它们的批量归一化实现略有不同。

全连接层

通常,我们将批量归一化层置于全连接层中的仿射变换和激活函数之间。

卷积层

同样,对于卷积层,我们可以在卷积层之后和非线性激活函数之前应用批量归一化。当卷积有多个输出通道时,我们需要对这些通道的“每个”输出执行批量归一化,每个用到都有自己的拉伸和偏移参数,这两个参数都是标量。假设我们的微批次包含 m m m个示例,并且对于每个通道,卷积的输出具有高度 p p p和宽度 q q q。那么对于卷积层,我们在每个输出通道的 m ∗ p ∗ q m*p*q m∗p∗q个元素上同时执行每个批量归一化。因此,在计算平均值和方差时,我们会收集所有空间位置的值,然后在给定通道内应用相同的均值和方差,以便在每个空间位置对值进行归一化。

预测过程中的批量归一化

正如我们前面提到的,批量归一化在训练模式和预测模式下的行为通常是不同的。
首先,将训练好的模型用于预测时,我们不再需要样本均值中的噪声以及在微批次上估计每个小批次产生的样本方差了。
其次,例如,我们可能需要使用我们的模型对逐个样本进行预测。一种常用的方法是通过移动平均估算整个训练数据集的样本均值和方差,并在预测时使用它们得到确定的输出。可见,和dropout一样,批量归一化层在训练模式和预测模式下的计算结果也是不一样的。

使用批量归一化层的LeNet

为了更好理解如何应用BatchNorm,下面我们将其应用于LeNet模型。回想一下,批量归一化是在卷积层或全连接层之后、相应的激活函数之前应用的。

net = nn.Sequential(
	nn.Conv2d(1, 6, kernel_size = 5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
	nn.MaxPool2d(kernel_size=2, stride=2)
	nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
	nn.MaxPool2d(kernel_size=2, stride=2), nn.Flatten(),
	nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
	nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
	nn.Linear(84, 10)
)

和以前一样,我们将在Fashion-MNIST数据集上训练网络。这个代码与我们第一次训练LeNet时几乎完全相同,主要区别在于学习率大得多。

lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.250, train acc 0.907, test acc 0.801
35560.7 examples/sec on cuda:0

让我们来看看从第一个批量归一化层中学到的拉伸参数gamma和便宜参数beta。

net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))
(tensor([0.7562, 1.2784, 2.3527, 1.3189, 2.0457, 2.8424], device='cuda:0',
grad_fn=<ViewBackward>),
tensor([ 0.7436, -0.8156, -0.2711, -0.5087, 0.5847, -3.0033], device='cuda:0',
grad_fn=<ViewBackward>))

简明实现

除了使用我们刚刚定义的BatchNorm,我们也可以直接使用深度学习框架中定义的BatchNorm。该代码看起来几乎与我们上面的代码相同。

net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),
nn.MaxPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
nn.Linear(84, 10))

下面,我们使用相同超参数来训练模型。请注意,通常高级API变体运行速度快得多,因为它的代码已编译为C++或CUDA,而我们自定义代码由Python实现。

d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.248, train acc 0.908, test acc 0.869
60219.9 examples/sec on cuda:0

争议

直观地说,批量归一化被认为可以使优化更加平滑。

然而,在提出批量归一化的论文中,作者除了介绍了其应用,还解释了其原理:通过减少内部协变量。然而这种解释更偏向于个人直觉。

但是批量归一化的效果很好,它适用于几乎所有图像分类器,并在学术界获得了数万引用。

以上就是Python深度学习理解pytorch神经网络批量归一化的详细内容,更多关于pytorch神经网络批量归一化的资料请关注我们其它相关文章!

(0)

相关推荐

  • Pandas对每个分组应用apply函数的实现

    Pandas的apply函数概念(图解) 实例1:怎样对数值按分组的归一化 实例2:怎样取每个分组的TOPN数据 到此这篇关于Pandas对每个分组应用apply函数的实现的文章就介绍到这了,更多相关Pandas 应用apply函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

  • python数据归一化及三种方法详解

    数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性.原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价.以下是三种常用的归一化方法: min-max标准化(Min-Max Normalization) 也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 , 1]之间.转换函数如下: 其中max为样本数据的最大值,

  • pytorch 图像中的数据预处理和批标准化实例

    目前数据预处理最常见的方法就是中心化和标准化. 中心化相当于修正数据的中心位置,实现方法非常简单,就是在每个特征维度上减去对应的均值,最后得到 0 均值的特征. 标准化也非常简单,在数据变成 0 均值之后,为了使得不同的特征维度有着相同的规模,可以除以标准差近似为一个标准正态分布,也可以依据最大值和最小值将其转化为 -1 ~ 1 之间 批标准化:BN 在数据预处理的时候,我们尽量输入特征不相关且满足一个标准的正态分布,这样模型的表现一般也较好.但是对于很深的网路结构,网路的非线性层会使得输出的结

  • Python实现快速傅里叶变换的方法(FFT)

    本文介绍了Python实现快速傅里叶变换的方法(FFT),分享给大家,具体如下: 这里做一下记录,关于FFT就不做介绍了,直接贴上代码,有详细注释的了: import numpy as np from scipy.fftpack import fft,ifft import matplotlib.pyplot as plt import seaborn #采样点选择1400个,因为设置的信号频率分量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采样频率为1400赫兹(即

  • Python深度学习理解pytorch神经网络批量归一化

    目录 训练深层网络 为什么要批量归一化层呢? 批量归一化层 全连接层 卷积层 预测过程中的批量归一化 使用批量归一化层的LeNet 简明实现 争议 训练深层神经网络是十分困难的,特别是在较短的实践内使他们收敛更加棘手.在本节中,我们将介绍批量归一化(batch normalization),这是一种流行且有效的技术,可持续加速深层网络的收敛速度.在结合之后将介绍的残差快,批量归一化使得研究人员能够训练100层以上的网络. 训练深层网络 为什么要批量归一化层呢? 让我们回顾一下训练神经网络时出现的

  • Python深度学习之Pytorch初步使用

    一.Tensor Tensor(张量是一个统称,其中包括很多类型): 0阶张量:标量.常数.0-D Tensor:1阶张量:向量.1-D Tensor:2阶张量:矩阵.2-D Tensor:-- 二.Pytorch如何创建张量 2.1 创建张量 import torch t = torch.Tensor([1, 2, 3]) print(t) 2.2 tensor与ndarray的关系 两者之间可以相互转化 import torch import numpy as np t1 = np.arra

  • Python深度学习pytorch神经网络填充和步幅的理解

    目录 填充 步幅 上图中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维度为 2 × 2 2\times2 2×2.从上图可看出卷积的输出形状取决于输入形状和卷积核的形状. 填充 以上面的图为例,在应用多层卷积时,我们常常丢失边缘像素. 解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是0). 例如,在上图中我们将 3 × 3 3\times3 3×3输入填充到 5 × 5 5\times5 5×5,那么它的输出就增加为 4 × 4

  • Python深度学习pytorch神经网络汇聚层理解

    目录 最大汇聚层和平均汇聚层 填充和步幅 多个通道 我们的机器学习任务通常会跟全局图像的问题有关(例如,"图像是否包含一只猫呢?"),所以我们最后一层的神经元应该对整个输入的全局敏感.通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有有时保留在中间层. 此外,当检测较底层的特征时(例如之前讨论的边缘),我们通常希望这些特征保持某种程度上的平移不变性.例如,如果我们拍摄黑白之间轮廓清晰的图像X,并将整个图像向右移动一个像素,即Z[i, j] = X[

  • Python深度学习pytorch卷积神经网络LeNet

    目录 LeNet 模型训练 在本节中,我们将介绍LeNet,它是最早发布的卷积神经网络之一.这个模型是由AT&T贝尔实验室的研究院Yann LeCun在1989年提出的(并以其命名),目的是识别手写数字.当时,LeNet取得了与支持向量机性能相媲美的成果,成为监督学习的主流方法.LeNet被广泛用于自动取款机中,帮助识别处理支票的数字. LeNet 总体来看,LeNet(LeNet-5)由两个部分组成: 卷积编码器: 由两个卷积层组成 全连接层密集快: 由三个全连接层组成 每个卷积块中的基本单元

  • Python深度学习pytorch神经网络多层感知机简洁实现

    我们可以通过高级API更简洁地实现多层感知机. import torch from torch import nn from d2l import torch as d2l 模型 与softmax回归的简洁实现相比,唯一的区别是我们添加了2个全连接层.第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数.第二层是输出层. net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 1

  • Python深度学习pytorch神经网络Dropout应用详解解

    目录 扰动的鲁棒性 实践中的dropout 简洁实现 扰动的鲁棒性 在之前我们讨论权重衰减(L2​正则化)时看到的那样,参数的范数也代表了一种有用的简单性度量.简单性的另一个有用角度是平滑性,即函数不应该对其输入的微笑变化敏感.例如,当我们对图像进行分类时,我们预计向像素添加一些随机噪声应该是基本无影响的. dropout在正向传播过程中,计算每一内部层同时注入噪声,这已经成为训练神经网络的标准技术.这种方法之所以被称为dropout,因为我们从表面上看是在训练过程中丢弃(drop out)一些

  • Python深度学习pytorch神经网络图像卷积运算详解

    目录 互相关运算 卷积层 特征映射 由于卷积神经网络的设计是用于探索图像数据,本节我们将以图像为例. 互相关运算 严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation),而不是卷积运算.在卷积层中,输入张量和核张量通过互相关运算产生输出张量. 首先,我们暂时忽略通道(第三维)这一情况,看看如何处理二维图像数据和隐藏表示.下图中,输入是高度为3.宽度为3的二维张量(即形状为 3 × 3 3\times3 3×3).卷积核的高度和宽度都是2. 注意,

  • Python深度学习pytorch神经网络多输入多输出通道

    目录 多输入通道 多输出通道 1 × 1 1\times1 1×1卷积层 虽然每个图像具有多个通道和多层卷积层.例如彩色图像具有标准的RGB通道来指示红.绿和蓝.但是到目前为止,我们仅展示了单个输入和单个输出通道的简化例子.这使得我们可以将输入.卷积核和输出看作二维张量. 当我们添加通道时,我们的输入和隐藏的表示都变成了三维张量.例如,每个RGB输入图像具有 3 × h × w 3\times{h}\times{w} 3×h×w的形状.我们将这个大小为3的轴称为通道(channel)维度.在本节

  • Python深度学习神经网络残差块

    目录 ResNet模型 训练模型 ResNet沿用VGG完整的KaTeX parse error: Undefined control sequence: \time at position 2: 3\̲t̲i̲m̲e̲3卷积层设计.残差块里首先有2个相同输出通道数的KaTeX parse error: Undefined control sequence: \time at position 2: 3\̲t̲i̲m̲e̲3卷积层.每个卷积层后接一个批量归一化层和ReLU激活函数.然后我们通过跨

随机推荐