Redis分布式锁如何自动续期的实现

目录
  • Redis 实现分布式锁
  • 问题
  • 自动续期
  • 看门狗
  • Redissson tryLock
  • 看门狗如何自动续期
  • 续期原理

Redis 实现分布式锁

  • 指定一个 key 作为锁标记,存入 Redis 中,指定一个 唯一的用户标识作为 value。
  • 当 key 不存在时才能设置值,确保同一时间只有一个客户端进程获得锁,满足互斥性特性。
  • 设置一个过期时间,防止因系统异常导致没能删除这个 key,满足防死锁特性。
  • 当处理完业务之后需要清除这个 key 来释放锁,清除 key 时需要校验 value 值,需要满足只有加锁的人才能释放锁 。

问题

如果这个锁的过期时间是30秒,但是业务运行超过了30秒,比如40秒,当业务运行到30秒的时候,锁过期了,其他客户端拿到了这个锁,怎么办

我们可以设置一个合理的过期时间,让业务能够在这个时间内完成业务逻辑,但LockTime的设置原本就很不容易。

  • LockTime设置过小,锁自动超时的概率就会增加,锁异常失效的概率也就会增加;
  • LockTime设置过大,万一服务出现异常无法正常释放锁,那么出现这种异常锁的时间也就越长。

我们只能通过经验去配置,一个可以接受的值,基本上是这个服务历史上的平均耗时再增加一定的buff。总体来说,设置一个合理的过期时间并不容易

我们也可以不设置过期时间,让业务运行结束后解锁,但是如果客户端出现了异常结束了或宕机了,那么这个锁就无法解锁,变成死锁;

自动续期

我们可以先给锁设置一个LockTime,然后启动一个守护线程,让守护线程在一段时间后,重新去设置这个锁的LockTime。

看起来很简单,但实现起来并不容易

  • 和释放锁的情况一样,我们需要先判断持有锁客户端是否有变化。否则会造成无论谁持有锁,守护线程都会去重新设置锁的LockTime。
  • 守护线程要在合理的时间再去重新设置锁的LockTime,否则会造成资源的浪费。不能动不动就去续。
  • 如果持有锁的线程已经处理完业务了,那么守护线程也应该被销毁。不能业务运行结束了,守护者还在那里继续运行,浪费资源。

看门狗

Redisson的看门狗机制就是这种机制实现自动续期的

Redissson tryLock

public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {
        long time = unit.toMillis(waitTime);
        long current = System.currentTimeMillis();
        long threadId = Thread.currentThread().getId();
        // 1.尝试获取锁
        Long ttl = tryAcquire(leaseTime, unit, threadId);
        // lock acquired
        if (ttl == null) {
            return true;
        }

        // 申请锁的耗时如果大于等于最大等待时间,则申请锁失败.
        time -= System.currentTimeMillis() - current;
        if (time <= 0) {
            acquireFailed(threadId);
            return false;
        }

        current = System.currentTimeMillis();

        /**
         * 2.订阅锁释放事件,并通过 await 方法阻塞等待锁释放,有效的解决了无效的锁申请浪费资源的问题:
         * 基于信息量,当锁被其它资源占用时,当前线程通过 Redis 的 channel 订阅锁的释放事件,一旦锁释放会发消息通知待等待的线程进行竞争.
         *
         * 当 this.await 返回 false,说明等待时间已经超出获取锁最大等待时间,取消订阅并返回获取锁失败.
         * 当 this.await 返回 true,进入循环尝试获取锁.
         */
        RFuture<RedissonLockEntry> subscribeFuture = subscribe(threadId);
        // await 方法内部是用 CountDownLatch 来实现阻塞,获取 subscribe 异步执行的结果(应用了 Netty 的 Future)
        if (!subscribeFuture.await(time, TimeUnit.MILLISECONDS)) {
            if (!subscribeFuture.cancel(false)) {
                subscribeFuture.onComplete((res, e) -> {
                    if (e == null) {
                        unsubscribe(subscribeFuture, threadId);
                    }
                });
            }
            acquireFailed(threadId);
            return false;
        }

        try {
            // 计算获取锁的总耗时,如果大于等于最大等待时间,则获取锁失败.
            time -= System.currentTimeMillis() - current;
            if (time <= 0) {
                acquireFailed(threadId);
                return false;

              }

            /**
             * 3.收到锁释放的信号后,在最大等待时间之内,循环一次接着一次的尝试获取锁
             * 获取锁成功,则立马返回 true,
             * 若在最大等待时间之内还没获取到锁,则认为获取锁失败,返回 false 结束循环
             */
            while (true) {
                long currentTime = System.currentTimeMillis();

                // 再次尝试获取锁
                ttl = tryAcquire(leaseTime, unit, threadId);
                // lock acquired
                if (ttl == null) {
                    return true;
                }
                // 超过最大等待时间则返回 false 结束循环,获取锁失败
                time -= System.currentTimeMillis() - currentTime;
                if (time <= 0) {
                    acquireFailed(threadId);
                    return false;
                }

                /**
                 * 6.阻塞等待锁(通过信号量(共享锁)阻塞,等待解锁消息):
                 */
                currentTime = System.currentTimeMillis();
                if (ttl >= 0 && ttl < time) {
                    //如果剩余时间(ttl)小于wait time ,就在 ttl 时间内,从Entry的信号量获取一个许可(除非被中断或者一直没有可用的许可)。
                    getEntry(threadId).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
                } else {
                    //则就在wait time 时间范围内等待可以通过信号量
                    getEntry(threadId).getLatch().tryAcquire(time, TimeUnit.MILLISECONDS);
                }

                // 更新剩余的等待时间(最大等待时间-已经消耗的阻塞时间)
                time -= System.currentTimeMillis() - currentTime;
                if (time <= 0) {
                    acquireFailed(threadId);
                    return false;
                }
            }
        } finally {
            // 7.无论是否获得锁,都要取消订阅解锁消息
            unsubscribe(subscribeFuture, threadId);
        }
        return get(tryLockAsync(waitTime, leaseTime, unit));
    }
  • 尝试获取锁,返回 null 则说明加锁成功,返回一个数值,则说明已经存在该锁,ttl 为锁的剩余存活时间。
  • 如果此时客户端 2 进程获取锁失败,那么使用客户端 2 的线程 id(其实本质上就是进程 id)通过 Redis 的 channel 订阅锁释放的事件。如果等待的过程中一直未等到锁的释放事件通知,当超过最大等待时间则获取锁失败,返回 false,也就是第 39 行代码。如果等到了锁的释放事件的通知,则开始进入一个不断重试获取锁的循环。
  • 循环中每次都先试着获取锁,并得到已存在的锁的剩余存活时间。如果在重试中拿到了锁,则直接返回。如果锁当前还是被占用的,那么等待释放锁的消息,具体实现使用了信号量 Semaphore 来阻塞线程,当锁释放并发布释放锁的消息后,信号量的 release() 方法会被调用,此时被信号量阻塞的等待队列中的一个线程就可以继续尝试获取锁了。
  • 当锁正在被占用时,等待获取锁的进程并不是通过一个 while(true) 死循环去获取锁,而是利用了 Redis 的发布订阅机制,通过 await 方法阻塞等待锁的进程,有效的解决了无效的锁申请浪费资源的问题。

看门狗如何自动续期

Redisson看门狗机制, 只要客户端加锁成功,就会启动一个 Watch Dog。

private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, long threadId) {
    if (leaseTime != -1) {
        return tryLockInnerAsync(leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
    }
    RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(), TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
    ttlRemainingFuture.onComplete((ttlRemaining, e) -> {
        if (e != null) {
            return;
        }

        // lock acquired
        if (ttlRemaining == null) {
            scheduleExpirationRenewal(threadId);
        }
    });
    return ttlRemainingFuture;
}

leaseTime 必须是 -1 才会开启 Watch Dog 机制,如果需要开启 Watch Dog 机制就必须使用默认的加锁时间为 30s。

如果你自己自定义时间,超过这个时间,锁就会自定释放,并不会自动续期。

续期原理

续期原理其实就是用lua脚本,将锁的时间重置为30s

private void scheduleExpirationRenewal(long threadId) {
    ExpirationEntry entry = new ExpirationEntry();
    ExpirationEntry oldEntry = EXPIRATION_RENEWAL_MAP.putIfAbsent(getEntryName(), entry);
    if (oldEntry != null) {
        oldEntry.addThreadId(threadId);
    } else {
        entry.addThreadId(threadId);
        renewExpiration();
    }
}

protected RFuture<Boolean> renewExpirationAsync(long threadId) {
    return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
            "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                "return 1; " +
            "end; " +
            "return 0;",
        Collections.<Object>singletonList(getName()),
        internalLockLeaseTime, getLockName(threadId));
}

Watch Dog 机制其实就是一个后台定时任务线程,获取锁成功之后,会将持有锁的线程放入到一个 RedissonLock.EXPIRATION_RENEWAL_MAP里面,然后每隔 10 秒 (internalLockLeaseTime / 3) 检查一下,如果客户端 还持有锁 key(判断客户端是否还持有 key,其实就是遍历 EXPIRATION_RENEWAL_MAP 里面线程 id 然后根据线程 id 去 Redis 中查,如果存在就会延长 key 的时间),那么就会不断的延长锁 key 的生存时间。

如果服务宕机了,Watch Dog 机制线程也就没有了,此时就不会延长 key 的过期时间,到了 30s 之后就会自动过期了,其他线程就可以获取到锁。

到此这篇关于Redis分布式锁如何自动续期的实现的文章就介绍到这了,更多相关Redis分布式锁自动续期内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 基于redis分布式锁实现秒杀功能

    最近在项目中遇到了类似"秒杀"的业务场景,在本篇博客中,我将用一个非常简单的demo,阐述实现所谓"秒杀"的基本思路. 业务场景 所谓秒杀,从业务角度看,是短时间内多个用户"争抢"资源,这里的资源在大部分秒杀场景里是商品:将业务抽象,技术角度看,秒杀就是多个线程对资源进行操作,所以实现秒杀,就必须控制线程对资源的争抢,既要保证高效并发,也要保证操作的正确. 一些可能的实现 刚才提到过,实现秒杀的关键点是控制线程对资源的争抢,根据基本的线程知识,可

  • Redis分布式锁实现方式及超时问题解决

    一 前言 redis在分布式应用十分广泛,本篇文章也是互联网面试的重点内容,读者至少需要知道为什么需要分布式锁,分布式锁的实现原理,分布式锁的应用场景,在使用分布式锁时遇到哪些问题?你是如何解决的,如果读者能掌握以上问题,那么关于这道面试题,你也就基本过关了: 二 分布式锁的产生背景 分布式锁对应的是多个应用,每个应用中都可能会处理相同的数据,如果多个应用对用一个操作进行了重复操作,就会出现数据不一致,数据重复问题,于是分布式锁应用而生,通常你可以理解为多线程中的synchronized 三 分

  • Redis分布式锁的实现方式(redis面试题)

    什么是分布式锁? 要介绍分布式锁,首先要提到与分布式锁相对应的是线程锁.进程锁. 线程锁:主要用来给方法.代码块加锁.当某个方法或代码使用锁,在同一时刻仅有一个线程执行该方法或该代码段.线程锁只在同一JVM中有效果,因为线程锁的实现在根本上是依靠线程之间共享内存实现的,比如synchronized是共享对象头,显示锁Lock是共享某个变量(state). 进程锁:为了控制同一操作系统中多个进程访问某个共享资源,因为进程具有独立性,各个进程无法访问其他进程的资源,因此无法通过synchronize

  • 基于Redis分布式锁的实现代码

    概述 目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题.分布式的CAP理论告诉我们"任何一个分布式系统都无法同时满足一致性(Consistency).可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项."所以,很多系统在设计之初就要对这三者做出取舍.在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证"最终一致性",只要这

  • Redis分布式锁的正确实现方法总结

    分布式锁一般有三种实现方式: 1.数据库乐观锁: 2.基于Redis的分布式锁: 3.基于ZooKeeper的分布式锁. 本文将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁. 可靠性 首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件: 1.互斥性.在任意时刻,只有一个客户端能持有锁. 2.不会发生死锁.即使有一个客户端在

  • 浅谈Redis分布式锁的正确实现方式

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁. 可靠性 首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件: 1.互斥性.在任意时刻,只有一个客户端能持有锁. 2.不会发生死锁.即使有一个

  • 如何利用Redis分布式锁实现控制并发操作

    redis命令解释 说道Redis的分布式锁都是通过setNx命令结合getset来实现的,在讲之前我们先了解下setNx和getset的意思,在redis官网是这样解释的 注:redis的命令都是原子操作 SETNX key value 将 key 的值设为 value ,当且仅当 key 不存在. 若给定的 key 已经存在,则 SETNX 不做任何动作. SETNX 是『SET if Not eXists』(如果不存在,则 SET)的简写. 可用版本: 1.0.0+ 时间复杂度: O(1)

  • 谈谈Redis分布式锁的正确实现方法

    前言 最近在参加学校安排的实训任务,我们小组需完成一套分布式&微服务跨境电商,虽然这题目看起来有点老套,并且队友多是 Java 技术栈,所以我光荣(被迫) 的成为了一名前端,并顺路使用 PHP 的 Swoole 帮助负责服务器端的同学编写了几个微服务模块.在小组成员之间的协作中,还是出现了不少有趣的火花. 在昨天 review 队友代码的过程中,发现了我们组分布式锁的写法似乎有点问题,实现代码如下: 加锁部分 解锁部分 主要原理是使用了 redis 的 setnx 去插入一组 key-value

  • Redis分布式锁如何自动续期的实现

    目录 Redis 实现分布式锁 问题 自动续期 看门狗 Redissson tryLock 看门狗如何自动续期 续期原理 Redis 实现分布式锁 指定一个 key 作为锁标记,存入 Redis 中,指定一个 唯一的用户标识作为 value. 当 key 不存在时才能设置值,确保同一时间只有一个客户端进程获得锁,满足互斥性特性. 设置一个过期时间,防止因系统异常导致没能删除这个 key,满足防死锁特性. 当处理完业务之后需要清除这个 key 来释放锁,清除 key 时需要校验 value 值,需

  • Redis分布式锁如何实现续期

    目录 Redis分布式锁如何续期 Redis分布式锁的正确姿势 如何回答 源码分析 真相大白 Redis分布式锁的5个坑 一.锁未被释放 二.B的锁被A给释放了 三.数据库事务超时 四.锁过期了,业务还没执行完 五.redis主从复制的坑 Redis分布式锁如何续期 Redis分布式锁的正确姿势 据肥朝了解,很多同学在用分布式锁时,都是直接百度搜索找一个Redis分布式锁工具类就直接用了.关键是该工具类中还充斥着很多System.out.println();等语句.其实Redis分布式锁比较正确

  • 详解redis分布式锁的这些坑

    一.白话分布式 什么是分布式,用最简单的话来说,就是为了较低单个服务器的压力,将功能分布在不同的机器上面,本来一个程序员可以完成一个项目:需求->设计->编码->测试 但是项目多的时候,一个人也扛不住,这就需要不同的人进行分工合作了 这就是一个简单的分布式协同工作了: 二.分布式锁 首先看一个问题,如果说某个环节被终止或者别侵占,就会发生不可知的事情 这就会出现,设计好的或者设计的半成品会被破坏,导致后面环节出错: 这时候,我们就需要引入分布式锁的概念: 何为分布式锁 当在分布式模型下,

  • redis分布式锁RedissonLock的实现细节解析

    redis分布式锁RedissonLock 简单使用 String key = "key-lock"; RLock lock = redisson.getLock(key); lock.lock(); try { // TODO } catch (Exception e){ log.error(e.getMessage(), e); } finally { lock.unlock(); } String key = "key-tryLock"; long maxWa

  • Go 语言下基于Redis分布式锁的实现方式

    分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁. 项目地址: https://github.com/Spongecaptain/redisLock 1. Go 原生的互斥锁 Go 原生的互斥锁即 sync 包下的 M

  • Redis分布式锁详细介绍

    目录 分布式锁 redis实现分布式锁的原理 死锁问题 超时问题 锁误放问题 可重入性 Redlock 分布式锁 在单进程应用中,当一段代码同一时间内只能由一个线程执行时, 多线程下可能会出错,例如两个线程同时对一个数字做累加,两个线程同时拿到了该数字,例如40,一个线程加了10,一个线程加了20,正确结果应该是70, 但由于两个线程在自己的内存中一个算出的是50,一个算出的是60,此时二者都将自己的结果往该数字原本的地方写(保存), 这时候,肯定会有一个线程的值会被覆盖,因为读取->计算->

  • Redisson如何解决Redis分布式锁提前释放问题

    目录 前言: 一.问题描述: 二.原因分析: 三.解决方案: 1.思考: 2.Redisson简单配置: 3.使用样例: 四.源码分析 1.lock加锁操作 2.unlock解锁操作 总结: 相关参考: 前言: 在分布式场景下,相信你或多或少需要使用分布式锁来访问临界资源,或者控制耗时操作的并发性. 当然,实现分布式锁的方案也比较多,比如数据库.redis.zk 等等.本文主要结合一个线上案例,讲解 redis 分布式锁的相关实现. 一.问题描述: 某天线上出现了数据重复处理问题,经排查后发现,

  • redis分布式锁的8大坑总结梳理

    目录 前言 1 非原子操作 2 忘了释放锁 3 释放了别人的锁 4 大量失败请求 5 锁重入问题 6 锁竞争问题 6.1 读写锁 6.2 锁分段 7 锁超时问题 8 主从复制的问题 前言 在分布式系统中,由于redis分布式锁相对于更简单和高效,成为了分布式锁的首先,被我们用到了很多实际业务场景当中. 但不是说用了redis分布式锁,就可以高枕无忧了,如果没有用好或者用对,也会引来一些意想不到的问题. 今天我们就一起聊聊redis分布式锁的一些坑,给有需要的朋友一个参考. 1 非原子操作 使用r

  • Java实现redis分布式锁的三种方式

    目录 一.引入原因 二.分布式锁实现过程中的问题 问题一:异常导致锁没有释放 问题二:获取锁与设置过期时间操作不是原子性的 问题三:锁过期之后被别的线程重新获取与释放 问题四:锁的释放不是原子性的 问题五:其他的问题? 三.具体实现 1. RedisTemplate 2. RedisLockRegistry 3. 使用redisson实现分布式锁 一.引入原因 在分布式服务中,常常有如定时任务.库存更新这样的场景. 在定时任务中,如果不使用quartz这样的分布式定时工具,只是简单的使用定时器来

  • Redisson如何解决redis分布式锁过期时间到了业务没执行完问题

    目录 面试问题 问题分析 如何回答 一.写在前面 二.Redisson实现Redis分布式锁的底层原理 (1)加锁机制 (2)锁互斥机制 (3)watch dog自动延期机制 (4)可重入加锁机制 (5)释放锁机制 (6)上述Redis分布式锁的缺点 总结 面试问题 Redis锁的过期时间小于业务的执行时间该如何续期? 问题分析 首先如果你之前用Redis的分布式锁的姿势正确,并且看过相应的官方文档的话,这个问题So easy.我们来看 很多同学在用分布式锁时,都是直接百度搜索找一个Redis分

随机推荐