通过实例简单了解python yield使用方法

实例代码如下

def demo():
  print("开始执行...")
  while 1:
    res = yield '这是返回值'
    print("res:",res)
d1 = demo()
print(d1)
print(next(d1))
print("*"*20)
print(next(d1))

执行结果如下:

开始执行...
这是返回值
********************
res: None
这是返回值

代码解释,个人理解,说得不对希望能够点出:

d1 = demo();生成一个对象,不会输出任何内容

print(d1); 这里不输入任何内容,因为程序第一次遇到yield就暂停了,即使yield前面有输出语句,一样给输出

print(next(d1)); 程序会接着yield继续执行,第二次遇到yield,return“这是返回值”,加起来就会会输出开始执行...
这是返回值

print(next(d1));再次执行next(d1),相当于第三遇到yield,因为上一步相当于被return,res并没有赋值,所以为None,继续执行while,第四次遇到yield,输出“这是返回值”

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python协程操作之gevent(yield阻塞,greenlet),协程实现多任务(有规律的交替协作执行)用法详解

    本文实例讲述了Python 协程操作之gevent(yield阻塞,greenlet),协程实现多任务(有规律的交替协作执行)用法.分享给大家供大家参考,具体如下: 实现多任务:进程消耗的资源最大,线程消耗的资源次之,协程消耗的资源最少(单线程). gevent实现协程,gevent是通过阻塞代码(例如网络延迟等)来自动切换要执行的任务,所以在进行IO密集型程序时(例如爬虫),使用gevent可以提高效率(有效利用网络延迟的时间去执行其他任务). GIL(全局解释器锁)是C语言版本的Python

  • 对python中return与yield的区别详解

    首先比较下return 与 yield的区别: return:在程序函数中返回某个值,返回之后函数不在继续执行,彻底结束. yield: 带有yield的函数是一个迭代器,函数返回某个值时,会停留在某个位置,返回函数值后,会在前面停留的位置继续执行,直到程序结束 首先,如果你还没有对yield有个初步分认识,那么你先把yield看做"return",这个是直观的,它首先是个return,普通的return是什么意思,就是在程序中返回某个值,返回之后程序就不再往下运行了.看做return

  • Python generator生成器和yield表达式详解

    前言 Python生成器(generator)并不是一个晦涩难懂的概念.相比于MetaClass和Closure等概念,其较为容易理解和掌握.但相对于程序结构:顺序.循环和分支而言其又不是特别的直观.无论学习任何的东西,概念都是非常重要的.正确树立并掌握一些基础的概念是灵活和合理运用的前提,本文将以一种通俗易懂的方式介绍一下generator和yield表达式. 1. Iterator与Iterable 首先明白两点: Iterator(迭代器)是可迭代对象; 可迭代对象并不一定是Iterato

  • python yield和Generator函数用法详解

    这篇文章主要介绍了python yield和Generator函数用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 首先我们从一个小程序导入,各定一个list,找出其中的素数,我们会这样写 import math def is_Prims(number): if number == 2: return True //除2以外的所有偶数都不是素数 elif number % 2 == 0: return False //如果一个数能被除1和

  • Python 生成器,迭代,yield关键字,send()传参给yield语句操作示例

    本文实例讲述了Python 生成器,迭代,yield关键字,send()传参给yield语句操作.分享给大家供大家参考,具体如下: demo.py(生成器,yield关键字): # 生成器是一个特殊的迭代器.可以用for...in遍历. # 带有yield关键字的函数,不再是一个函数,而是一个生成器模板.调用该模板会返回一个生成器对象. def create_num(all_num): a, b = 0, 1 current_num = 0 while current_num < all_num

  • Python yield生成器和return对比代码实例

    迭代是Python最强大的功能之一,是访问集合元素的一种方式. 迭代器是一个可以记住遍历的位置的对象. 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退. 迭代器有两个基本的方法:iter() 和 next(). 生成器是特殊的迭代器 def gen_yield(): for i in range(1,10): for j in range(1,10): yield i+j # return i+j if __name__ == '__main__': a

  • Python基于yield遍历多个可迭代对象

    使用itertools工具类中的chain方法,可以很方便的将多个iterable对象一起遍历. 不过,对于dict类型的iterable对象,只会遍历key. from itertools import chain my_list = [1, 2, 3] my_dict = { 'name': 'zs', 'age': 45 } # 使用chain将三个可迭代对象一起遍历, dict是打印key for value in chain(my_list, my_dict, range(20, 30

  • python异步编程 使用yield from过程解析

    前言 yield from 是 Python3.3 后新加的语言结构.yield from的主要功能是打开双向通道,把最外层的调用方法与最内层的子生成器连接起来.这两者就可以进行发送值和返回值了,yeild from结构的本质是简化嵌套的生产器,不理解这个是什么意思的话,下面我将用几个例子来对其使用方法进行讲解. yield from 是 Python3.3 后新加的语言结构.yield from的主要功能是打开双向通道,把最外层的调用方法与最内层的子生成器连接起来.这两者就可以进行发送值和返回

  • 通过实例简单了解python yield使用方法

    实例代码如下 def demo(): print("开始执行...") while 1: res = yield '这是返回值' print("res:",res) d1 = demo() print(d1) print(next(d1)) print("*"*20) print(next(d1)) 执行结果如下: 开始执行... 这是返回值 ******************** res: None 这是返回值 代码解释,个人理解,说得不对希

  • 通过实例简单了解Python中yield的作用

    这篇文章主要介绍了通过实例简单了解Python中yield的作用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 介绍 我们有时候会发现代码中return的地方,有用yield的,难道他们一样吗?其实,yield与return看起来很像,但实际上完全不同. 使用 def test(): print("****start****") while 1: res = yield 1 print("res:", res) t

  • 通过实例简单了解Python sys.argv[]使用方法

    sys.argv[]说白了就是一个从程序外部获取参数的桥梁,这个"外部"很关键,所以那些试图从代码来说明它作用的解释一直没看明白.因为我们从外部取得的参数可以是多个,所以获得的是一个列表(list),也就是说sys.argv其实可以看作是一个列表,所以才能用[]提取其中的元素.其第一个元素是程序本身,随后才依次是外部给予的参数. 下面我们通过一个极简单的test.py程序的运行结果来说明它的用法. import sysa=sys.argv[0]print(a) 将test.py保存在c

  • Python yield 使用方法浅析

    如何生成斐波那契數列 斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到.用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数: 清单 1. 简单输出斐波那契數列前 N 个数 def fab(max): n, a, b = 0, 0, 1 while n < max: print b a, b = b, a + b n = n + 1 执行 fab(5),我们可以得到如下输出: >>

  • Python yield使用方法示例

    1. iterator叠代器最简单例子应该是数组下标了,且看下面的c++代码: 复制代码 代码如下: int array[10];for ( int i = 0; i < 10; i++ )    printf("%d ", array[i]); 叠代器工作在一个容器里(array[10]),它按一定顺序(i++)从容器里取出值(array[i])并进行操作(printf("%d ", array[i]). 上面的代码翻译成python: 复制代码 代码如下:

  • Python yield的用法实例分析

    本文实例讲述了Python yield的用法.分享给大家供大家参考,具体如下: yield的英文单词意思是生产,刚接触Python的时候感到非常困惑,一直没弄明白yield的用法. 只是粗略的知道yield可以用来为一个函数返回值塞数据,比如下面的例子: def addlist(alist): for i in alist: yield i + 1 取出alist的每一项,然后把i + 1塞进去.然后通过调用取出每一项: alist = [1, 2, 3, 4] for x in addlist

  • Python常用特殊方法实例总结

    本文实例讲述了Python常用特殊方法.分享给大家供大家参考,具体如下: 1 __init__和__new__ __init__方法用来初始化类实例:__new__方法用来创建类实例. 主要的区别: 1).__init__通常用于初始化一个新实例,控制初始化的过程,发生在类实例被创建完以后.它是实例级别的方法. 2).__new__通常用于控制生成一个新实例的过程.它是类级别的方法. __new__具体的作用: 1) 继承一些不可变的class时(比如int, str, tuple),提供一个自

  • python使用clear方法清除字典内全部数据实例

    本文实例讲述了python使用clear方法清除字典内全部数据.分享给大家供大家参考.具体实现方法如下: d = {} d['name'] = 'Gumby' d['age'] = 42 print d returned_value = d.clear() print d print returned_value 希望本文所述对大家的Python程序设计有所帮助.

  • python避免死锁方法实例分析

    本文实例讲述了python避免死锁方法.分享给大家供大家参考.具体分析如下: 当两个或者更多的线程在等待资源的时候就会产生死锁,两个线程相互等待. 在本文实例中 thread1 等待thread2释放block , thread2等待thtead1释放ablock,   避免死锁的原则: 1. 一定要以一个固定的顺序来取得锁,这个列子中,意味着首先要取得alock, 然后再去block 2. 一定要按照与取得锁相反的顺序释放锁,这里,应该先释放block,然后是alock import thre

  • Python sqlite3事务处理方法实例分析

    本文实例讲述了Python sqlite3事务处理方法.分享给大家供大家参考,具体如下: sqlite3事务总结: 在connect()中不传入 isolation_level 事务处理: 使用connection.commit() #!/usr/bin/env python # -*- coding:utf-8 -*- '''sqlite3事务总结: 在connect()中不传入 isolation_level 事务处理: 使用connection.commit() 分析: 智能commit状

随机推荐