Java使用递归回溯完美解决八皇后的问题

八皇后问题

八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

解决思路

①第一个皇后先放第一行第一列。

②第二个皇后放在第二行第一列、然后判断是否OK,如果不0K, 继续放在第二列、第三列、依次把所有列都放完,找到一个合适。

③继续第三个皇后, 还是第一列、第二列…直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解。

④当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到。

⑤然后回头继续第-一个皇后放第二列,后面继续循环执行①②③④的步骤。

代码实现

/**
 * @Author: Yeman
 * @Date: 2021-10-31-15:48
 * @Description:
 */
public class Queue8 {
    int max = 8; //8个皇后
    int[] arr = new int[max]; //下标为第几个(即第几行),值为第几列
    static int count = 0; //多少个放法
    static int judgeCount = 0; //判断了多少次

    public static void main(String[] args) {
        Queue8 queue8 = new Queue8();
        queue8.check(0);
        System.out.printf("一共有%d种解法\n",count);
        System.out.printf("一共判断了%d次",judgeCount);
    }

    //用来放置第n个皇后
    private void check(int n){
        if (n == max){ //n为8相当于是第九个皇后了,说明已经全部放好了
            print();
            return;
        }
        for (int i = 0; i < arr.length; i++) {
            arr[n] = i;
            if (judge(n)){ //不冲突
                check(n+1);
            }
        }
    }

    //用来第n个皇后判断与前面的所有皇后是否冲突
    private boolean judge(int n){
        judgeCount++;
        for (int i = 0; i < n; i++) {
            //是否同列同斜线
            if (arr[i] == arr[n] || Math.abs(arr[i]-arr[n]) == Math.abs(i-n)){
                return false;
            }
        }
        return true;
    }

    //输出每一种放法
    private void print(){
        count++;
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }
}

运行结果

(截取部分)

到此这篇关于Java使用递归回溯完美解决八皇后的问题的文章就介绍到这了,更多相关Java 递归回溯内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 如何基于java语言实现八皇后问题

    这篇文章主要介绍了如何基于java语言实现八皇后问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 八皇后问题,在一个8X8的棋盘中,放置八个棋子,每个棋子的上下左右,左上左下,右上右下方向上不得有其他棋子.正确答案为92中,接下来用java语言实现. 代码如下 package eightQuen; /** * 八皇后问题 * * @author 83771 * */ public class eight { // 定义一个数组 表示棋盘 pu

  • 浅谈Java实现回溯算法之八皇后问题

    目录 一.前言 二.浅谈递归 三.回溯算法 四.八皇后问题 五.八皇后变种 六.总结 一.前言 说起八皇后问题,它是一道回溯算法类的经典问题,也可能是我们大部分人在上数据结构或者算法课上遇到过的最难的一道题-- 二.浅谈递归 对于递归算法,我觉得掌握递归是入门数据结构与算法的关键,因为后面学习很多操作涉及到递归,例如链表的一些操作.树的遍历和一些操作.图的dfs.快排.归并排序等等. 递归的实质还是借助栈实现一些操作,利用递归能够完成的操作使用栈都能够完成,并且利用栈的话可以很好的控制停止,效率

  • Java基于循环递归回溯实现八皇后问题算法示例

    本文实例讲述了Java基于循环递归回溯实现八皇后问题.分享给大家供大家参考,具体如下: 运行效果图如下: 棋盘接口 /** * 棋盘接口 * @author Administrator * */ public interface Piece { abstract boolean isRow(int line); abstract boolean isCol(int line,int col); } 棋盘类: /** * 棋盘 * @author Administrator * */ public

  • Java使用递归回溯完美解决八皇后的问题

    八皇后问题 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 解决思路 ①第一个皇后先放第一行第一列. ②第二个皇后放在第二行第一列.然后判断是否OK,如果不0K, 继续放在第二列.第三列.依次把所有列都放完,找到一个合适. ③继续第三个皇后, 还是第一列.第二列-直到第8个皇后也能放在一个不冲突的位置,算是找

  • python 使用递归回溯完美解决八皇后的问题

    八皇后问题描述:在一个8✖️8的棋盘上,任意摆放8个棋子,要求任意两个棋子不能在同一行,同一列,同一斜线上,问有多少种解法. 规则分析: 任意两个棋子不能在同一行比较好办,设置一个队列,队列里的每个元素代表一行,就能达到要求 任意两个棋子不能在同一列也比较好处理,设置的队列里每个元素的数值代表着每行棋子的列号,比如(0,7,3),表示第一行的棋子放在第一列,第二行的棋子放在第8列,第3行的棋子放在第4列(从0开始计算列号) 任意两个棋子不能在同一斜线上,可以把整个棋盘当作是一个XOY平面,原点在

  • C++基于回溯法解决八皇后问题示例

    本文实例讲述了C++基于回溯法解决八皇后问题的方法.分享给大家供大家参考,具体如下: 回溯法的基本做法是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法.这种方法适用于解一些组合数相当大的问题. 回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树.算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解.如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯:否则,进入该子树,继续按深度优先策略搜索. 回溯法指导思想--走不通,就掉头.设计过程:确

  • C语言基于回溯算法解决八皇后问题的方法

    本文实例讲述了C语言基于回溯算法解决八皇后问题的方法.分享给大家供大家参考,具体如下: 问题描述: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例:在8X8格的国际象棋棋盘上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 问题求解: 采用回溯算法,即从第一行开始,依次探查可以放置皇后的位置,若找到,则放置皇后,开始探查下一行:若该行没有位置可以放置皇后,则回溯至上一行,清除该行放置皇后的信息,从该行原本放置皇后的下一个位置开始探查可

  • javascript递归回溯法解八皇后问题

    下面给大家分享的是回溯法解八皇后, 带详细注解,这里就不多废话了. function NQueens(order) { if (order < 4) { console.log('N Queens problem apply for order bigger than 3 ! '); return; } var nQueens = []; var backTracking = false; rowLoop: for (var row=0; row<order; row++) { //若出现ro

  • PHP基于回溯算法解决n皇后问题的方法示例

    本文实例讲述了PHP基于回溯算法解决n皇后问题的方法.分享给大家供大家参考,具体如下: 这里对于n皇后问题就不做太多的介绍,相关的介绍与算法分析可参考前面一篇C++基于回溯法解决八皇后问题. 回溯法的基本做法是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法.这种方法适用于解一些组合数相当大的问题. 回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树.算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解.如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向

  • python基于右递归解决八皇后问题的方法

    本文实例讲述了python基于右递归解决八皇后问题的方法.分享给大家供大家参考.具体分析如下: 凡是线性回溯都可以归结为右递归的形式,也即是二叉树,因此对于只要求一个解的问题,采用右递归实现的程序要比回溯法要优美的多. def Test(queen,n): '''这个就不用说了吧,就是检验第n(下标,0-7)行皇后的位置是否合理''' q=queen[n] for i in xrange(n): if queen[i]==q or queen[i]-q==n-i or queen[i]-q==i

  • Python解决八皇后问题示例

    本文实例讲述了Python解决八皇后问题的方法.分享给大家供大家参考,具体如下: 八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上.八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n1×n1,而皇后个数也变成n2.而且仅当 n2 = 1 或 n1 ≥ 3 时问题有解. 这是一个典型的回溯算法,我们可以将问题进行分解: 首先,我们要想到某种方

  • C语言回溯法解八皇后问题(八皇后算法)

    八皇后问题(N皇后问题)的回溯法求解 一.问题描述 在一个国际象棋棋盘上放置八个皇后,使得任何两个皇后之间不相互攻击,求出所有的布棋方法,并推广到N皇后情况. 二.参考资料 啥文字都不用看,B站上有个非常详细的动画视频解说,上链接!!! Click Here! 三.源代码 #include<iostream> #include<vector> #include<string> using namespace std; void put_queen(int x, int

  • C#用递归算法解决八皇后问题

    1.引子 中国有一句古话,叫做"不撞南墙不回头",生动的说明了一个人的固执,有点贬义,但是在软件编程中,这种思路确是一种解决问题最简单的算法,它通过一种类似于蛮干的思路,一步一步地往前走,每走一步都更靠近目标结果一些,直到遇到障碍物,我们才考虑往回走.然后再继续尝试向前.通过这样的波浪式前进方法,最终达到目的地.当然整个过程需要很多往返,这样的前进方式,效率比较低下. 2.适用范围 适用于那些不存在简明的数学模型以阐明问题的本质,或者存在数学模型,但是难于实现的问题. 3.应用场景 在

随机推荐