python 将numpy维度不同的数组相加相乘操作

第一种

np矩阵可以直接与标量运算

>>>import numpy as np
>>>arr1 = np.arange(12).reshape([2,2,3])
>>>arr1
array([[[ 0, 1, 2],
  [ 3, 4, 5]],
  [[ 6, 7, 8],
  [ 9, 10, 11]]])
>>>arr1*5
array([[[ 0, 5, 10],
  [15, 20, 25]],
  [[30, 35, 40],
  [45, 50, 55]]])
>>>arr1-5
array([[[-5, -4, -3],
  [-2, -1, 0]],
  [[ 1, 2, 3],
  [ 4, 5, 6]]])
>>>arr1**2
array([[[ 0, 1, 4],
  [ 9, 16, 25]],
  [[ 36, 49, 64],
  [ 81, 100, 121]]])

第二种

若arr1是高维数组,如果arr2的维度与arr1某个子数组维度相同,那么可以相互作运算。

PyDev console: starting.
Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 16:52:21)
[Clang 6.0 (clang-600.0.57)] on darwin
>>>import numpy as np
>>>arr1 = np.arange(12).reshape([2,2,3])
>>>arr1
array([[[ 0, 1, 2],
  [ 3, 4, 5]],
  [[ 6, 7, 8],
  [ 9, 10, 11]]])
>>>arr2 = np.array([2,2,2])
>>>arr2
array([2, 2, 2])
>>>arr1*arr2
array([[[ 0, 2, 4],
  [ 6, 8, 10]],
  [[12, 14, 16],
  [18, 20, 22]]])
>>>arr3 = np.arange(6).reshape([2,3])
>>>arr1*arr3
array([[[ 0, 1, 4],
  [ 9, 16, 25]],
  [[ 0, 7, 16],
  [27, 40, 55]]])

补充:python 按不同维度求和,最值,均值

当变量维数加大时很难想象是怎样按不同维度求和的,高清楚一个,其他的应该就很清楚了,什么都不说了,上例子,例子一看便明白…..

a=range(27)
a=np.array(a)
a=np.reshape(a,[3,3,3])

输出a的结果是:

array([[[ 0, 1, 2],
  [ 3, 4, 5],
  [ 6, 7, 8]],
  [[ 9, 10, 11],
  [12, 13, 14],
  [15, 16, 17]],
  [[18, 19, 20],
  [21, 22, 23],
  [24, 25, 26]]])

我们来看看 aa=np.sum(a,-1)的输出:

array([[ 3, 12, 21],
[30, 39, 48],
[57, 66, 75]])

bb=np.sum(a,2) 的输出

array([[ 3, 12, 21],
  [30, 39, 48],
  [57, 66, 75]])

cc=np.sum(a,0)的输出:

array([[27, 30, 33],
  [36, 39, 42],
  [45, 48, 51]])

cc=np.sum(a,1)的输出:

array([[ 9, 12, 15],
  [36, 39, 42],
  [63, 66, 69]])

第-1个维度与第2个维度是一样的,第-1个维度实际是指最后一个维度。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • python中数组和矩阵乘法及使用总结(推荐)

    Matrix是Array的一个小的分支,包含于Array.所以matrix 拥有array的所有特性. 但在数组乘和矩阵乘时,两者各有不同,如果a和b是两个matrices,那么a*b,就是矩阵积 如果a,b是数组的话,则a*b是数组的运算 1.对数组的操作 >>> import numpy as np >>> a=np.array([[1,2,3],[4,5,6],[7,8,9]]) >>> a array([[1, 2, 3], [4, 5, 6]

  • Python 实现两个列表里元素对应相乘的方法

    方法一: 结合zip函数,使用map函数: List1 = [1,2,3,4] List2 = [5,6,7,8] List3 = map(lambda (a,b):a*b,zip(List1,List2)) print List3 方法二: 把列表转化为数组,使用np.multiply函数 List = [1,2,3] List2 = [5,6,7] List3 = np.multiply(np.array(List1),np.array(List2)) print List3.tolist(

  • 细说NumPy数组的四种乘法的使用

    当孔乙己说回字有四样写法的时候,相信各位都是这样的表情吧? 但是,如果孔乙己说NumPy数组有四种乘法的时候,各位大约就是这样的表情了吧? 实际上,NumPy数组乘法远不止四种.为了在写作和阅读时保持清晰的逻辑和清醒的头脑,本文仅对四种最常见的数组乘法给出详细说明,并用一道数学题来演示向量点乘和叉乘的用法. 1. 星乘(*) 先声明一下:星乘这个说法,是我自己创造的,因为我实在不知道数组的这种乘法有没有其他高大上的名字,只好用运算符来表示了.所谓数组星乘,就是数组的对应元素相乘,这也是初学Num

  • 对python中矩阵相加函数sum()的使用详解

    假如矩阵A是n*n的矩阵 A.sum()是计算矩阵A的每一个元素之和. A.sum(axis=0)是计算矩阵每一列元素相加之和. A.Sum(axis=1)是计算矩阵的每一行元素相加之和. 以上这篇对python中矩阵相加函数sum()的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python 将numpy维度不同的数组相加相乘操作

    第一种 np矩阵可以直接与标量运算 >>>import numpy as np >>>arr1 = np.arange(12).reshape([2,2,3]) >>>arr1 array([[[ 0, 1, 2], [ 3, 4, 5]], [[ 6, 7, 8], [ 9, 10, 11]]]) >>>arr1*5 array([[[ 0, 5, 10], [15, 20, 25]], [[30, 35, 40], [45, 50

  • Python 用NumPy创建二维数组的案例

    前言 上位机实战开发先放一放,今天来学习一个新的内容-NumPy的使用 1 一维数组 例:用普通方法生成一维数组 num = [0 for i in range(1,5)] # 创建一维数组 print(num) # 打印数组 print("-"*50) # 分割线 num[2]=6 # 将第三个元素修改位6 print(num) # 打印数组 print("-"*50) # 分割线 运行结果 例:用numpy生成一维数组 from numpy import * m

  • python中numpy基础学习及进行数组和矢量计算

    前言 在python 中有时候我们用数组操作数据可以极大的提升数据的处理效率,类似于R的向量化操作,是的数据的操作趋于简单化,在python 中是使用numpy模块可以进行数组和矢量计算. 下面来看下简单的例子 import numpy as np data=np.array([2,5,6,8,3]) #构造一个简单的数组 print(data) 结果: [2 5 6 8 3] data1=np.array([[2,5,6,8,3],np.arange(5)]) #构建一个二维数组 print(

  • python中numpy包使用教程之数组和相关操作详解

    前言 大家应该都有所了解,下面就简单介绍下Numpy,NumPy(Numerical Python)是一个用于科学计算第三方的Python包. NumPy提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生.下面本文将详细介绍关于python中numpy包使用教程之数组和相关操作的相关内容,下面话不多说,来一起看看详细的介绍: 一.数组简介 Numpy中,最重要的数据结构是:多维数组类型(numpy.ndarray) ndarray由两部分组成

  • Python numpy实现二维数组和一维数组拼接的方法

    撰写时间:2017.5.23 一维数组 1.numpy初始化一维数组 a = np.array([1,2,3]); print a.shape 输出的值应该为(3,) 二维数组 2.numpy初始化二维数组 a = np.array([[1,2,3]]); b = np.array([[1],[2],[3]]); print a.shape//(1,3) print b.shape//(3,1) 注意(3,)和(3,1)的数组是不一样的,前者是一维数组,后者是二维数组. 拼接 3.numpy有很

  • Python NumPy教程之遍历数组详解

    NumPy 包包含一个迭代器对象numpy.nditer.它是一个高效的多维迭代器对象,使用它可以迭代数组.使用 Python 的标准迭代器接口访问数组的每个元素. # 用于遍历数组的 Python 程序 import numpy as geek # 使用排列方法创建数组 a = geek.arange(12) # 具有 3 行和 4 列的形状数组 a = a.reshape(3,4) print('Original array is:') print(a) print() print('Mod

  • python中numpy的矩阵、多维数组的用法

    1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工具箱,函数查询.调用.变量查询等非常方便,或许以后用久了python也会感觉很好用.与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便. 言归正传,做算法要用

  • Python遍历numpy数组的实例

    在用python进行图像处理时,有时需要遍历numpy数组,下面是遍历数组的方法: [rows, cols] = num.shape for i in range(rows - 1): for j in range(cols-1): print(num[j, i]) 以上这篇Python遍历numpy数组的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Python Numpy 数组的初始化和基本操作 python中numpy包使用教程之

  • 基于Python中numpy数组的合并实例讲解

    Python中numpy数组的合并有很多方法,如 - np.append() - np.concatenate() - np.stack() - np.hstack() - np.vstack() - np.dstack() 其中最泛用的是第一个和第二个.第一个可读性好,比较灵活,但是占内存大.第二个则没有内存占用大的问题. 方法一--append parameters introduction arr 待合并的数组的复制(特别主页是复制,所以要多耗费很多内存) values 用来合并到上述数组

  • Python使用numpy模块创建数组操作示例

    本文实例讲述了Python使用numpy模块创建数组操作.分享给大家供大家参考,具体如下: 创建数组 创建ndarray 创建数组最简单的方法就是使用array函数.它接收一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的Numpy数组. array函数创建数组 import numpy as np ndarray1 = np.array([1, 2, 3, 4]) ndarray2 = np.array(list('abcdefg')) ndarray3 = np.array([

随机推荐