详解Python中图像边缘检测算法的实现

目录
  • 写在前面
  • 1.一阶微分算子
    • 1.1 Prewitt算子
    • 1.2 Sobel算子
  • 2.二阶微分算子
    • 2.1 Laplace算子
    • 2.2 LoG算子
  • 3.Canny边缘检测

写在前面

从本节开始,计算机视觉教程进入第三章节——图像特征提取。在本章,你会见到一张简简单单的图片中蕴含着这么多你没注意到的细节特征,而这些特征将会在今后更高级的应用中发挥着极其重要的作用。本文讲解基础特征之一——图像边缘。

本文采用面向对象设计,定义了一个边缘检测类EdgeDetect,使图像边缘检测算法的应用更简洁,例如

import cv2
import numpy as np
import matplotlib.pyplot as plt

Detector = EdgeDetect('1.jpg')
Prewitt = Detector.prewitt()
plt.imshow(Prewitt , 'gray')
plt.show()

这个类的构造函数为

class EdgeDetect:
    def __init__(self, img) -> None:
        self.src = cv2.imread(img)
        self.gray = cv2.cvtColor(self.src, cv2.COLOR_BGR2GRAY)

读取的是图像的基本信息。

1.一阶微分算子

图像边缘是数字图像的高频成分,对应图像梯度的极值。在二维离散数字图像上,某个方向上图像强度函数微分使用有限差分法来近似,即:

因此图像边缘检测即是对图像的差分运算。

1.1 Prewitt算子

Prewitt算子本质上就是x或y方向上相邻像素的差分。

那我们常说的图像梯度是什么意思呢?

其实就是用x与y方向上相邻像素的差分为方向的向量

在编程实现上,就是构造上图的两个方向的滤波算子,然后将x xx、y yy两个方向的边缘合成就是整张图各方向的边缘检测结果

def prewitt(self):
    # Prewitt 算子
    kernelX = np.array([[1,1,1],[0,0,0],[-1,-1,-1]], dtype=int)
    kernelY = np.array([[-1,0,1],[-1,0,1],[-1,0,1]], dtype=int)
    # 对图像滤波
    x = cv2.filter2D(self.gray, cv2.CV_16S, kernelX)
    y = cv2.filter2D(self.gray, cv2.CV_16S, kernelY)
    # 转 uint8 ,图像融合
    absX = cv2.convertScaleAbs(x)
    absY = cv2.convertScaleAbs(y)
    return cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

1.2 Sobel算子

对高斯核函数x、y方向求导,并将其模板化即得Sobel算子。Sobel算子相比于Prewitt算子有更强的抗噪能力,因为其结合了高斯滤波的效果。

在编程实现上,就是构造上图的两个方向的滤波算子,然后将x、y两个方向的边缘合成就是整张图各方向的边缘检测结果

def sobel(self):
    # Sobel 算子
    kernelX = np.array([[1, 2, 1],[0, 0, 0],[-1, -2, -1]],dtype=int)
    kernelY = np.array([[-1, -2, -1],[0, 0, 0],[1, 2, 1]],dtype=int)
    # 对图像滤波
    x = cv2.filter2D(self.gray, cv2.CV_16S, kernelX)
    y = cv2.filter2D(self.gray, cv2.CV_16S, kernelY)
    # 转 uint8 ,图像融合
    absX = cv2.convertScaleAbs(x)
    absY = cv2.convertScaleAbs(y)
    return cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

2.二阶微分算子

2.1 Laplace算子

将Laplace算子

写成差分方程形式为

将差分方程进一步写成卷积核形式如图(a),可将其扩展为图(b)使之具有各向同性。微分算子属于高通滤波,在锐化边缘的同时也增强了噪点,因此Laplace算子抗噪能力弱,且不能检测边缘方向。

在编程实现上,就是构造上图的滤波算子

# Laplace 算子
def laplace(self):
    kernel = np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]], dtype=int)
    img = cv2.filter2D(self.gray, cv2.CV_16S, kernel)
    return cv2.convertScaleAbs(img)

2.2 LoG算子

为克服Laplace算子抗噪能力弱这一问题,引入高斯-拉普拉斯算子(LoG, Laplace of Gaussian),即先低通滤除噪声,再高通强化边缘,LoG算子本质上是带通滤波器。

在编程实现上,就是构造上图的滤波算子

# LoG算子
def LoG(self):
    kernel = np.array([[0, 0, 1, 0, 0], [0, 1, 2, 1, 0], [1, 2, -16, 2, 1], [0, 1, 2, 1, 0], [0, 0, 1, 0, 0]], dtype=int)
    img = cv2.filter2D(self.gray, cv2.CV_16S, kernel)
    return cv2.convertScaleAbs(img)

3.Canny边缘检测

Canny边缘检测算法可以分为以下步骤。

  • 使用Sobel算子滤除原图像噪声,并得到梯度图;
  • 应用非极大值抑制(Non-Maximum Suppression, NMS)以消除边缘检测、目标检测带来的杂散响应,即对待测边缘或目标,应尽可能有唯一的准确响应
  • 应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。

使用如下双阈值检测算法解决因噪声引起的杂散边缘响应。

阈值的选择取决于给定输入图像的内容。下面对弱边缘进一步审查,即

通常,由真实边缘引起的弱边缘像素将连接到强边缘像素,而噪声响应未连接。为了跟踪边缘连接,通过查看弱边缘像素的8个邻域像素是否存在强边缘像素,来决定是否滤除该弱边缘点。

下面是Canny边缘检测算法的效果。

到此这篇关于详解Python中图像边缘检测算法的实现的文章就介绍到这了,更多相关Python图像边缘检测算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python opencv实现图像边缘检测

    本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤: 1.去噪 如cv2.GaussianBlur()等函数: 2.计算图像梯度 图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式: 3.非极大值抑制 在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点.对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的.如下图所示: 4.滞后阈值 现在要确定那些边界才是真正的

  • Python 计算机视觉编程进阶之OpenCV 图像锐化及边缘检测

    目录 前言 (1)图像锐化 (2)图像边缘检测 a. 图像边缘 b. 边缘检测 1. 一阶微分算算子.二阶微分算子 2. 读取图像信息 3. Sobel 算子 4. Laplacian 算子 5. Scharr 算子 6. Canny 算子 7. 总结 8. 参考论文 参考的一些文章以及论文我都会给大家分享出来 -- 链接就贴在原文,论文我上传到资源中去,大家可以免费下载学习,如果当天资源区找不到论文,那就等等,可能正在审核,审核完后就可以下载了.大家一起学习,一起进步!加油!! 前言 (1)图

  • Python+OpenCV 图像边缘检测四种实现方法

    目录 1.Sobel算子 2.Schaar算子(更能体现细节) 3.Laplacian算子(基于零穿越的,二阶导数的0值点) 4.Canny边缘检测(被认为是最优的边缘检测算法) 总结 import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 设置兼容中文 plt.rcParams['font.family'] = ['sans-serif'] plt.rcParams['font.sans-serif'] = [

  • 使用OpenCV-python3实现滑动条更新图像的Canny边缘检测功能

    import cv2 from matplotlib import pyplot as plt import numpy as np img= cv2.imread('39.jpg')#加载图片 cv2.namedWindow('Canny edge detect')#设置窗口,cv2.WINDOW_NORMAL表示窗口大小可自动调节 cv2.namedWindow('Original Image',cv2.WINDOW_NORMAL) cv2.namedWindow('Canny edgeIm

  • 详解Python中图像边缘检测算法的实现

    目录 写在前面 1.一阶微分算子 1.1 Prewitt算子 1.2 Sobel算子 2.二阶微分算子 2.1 Laplace算子 2.2 LoG算子 3.Canny边缘检测 写在前面 从本节开始,计算机视觉教程进入第三章节——图像特征提取.在本章,你会见到一张简简单单的图片中蕴含着这么多你没注意到的细节特征,而这些特征将会在今后更高级的应用中发挥着极其重要的作用.本文讲解基础特征之一——图像边缘. 本文采用面向对象设计,定义了一个边缘检测类EdgeDetect,使图像边缘检测算法的应用更简洁,

  • 一文详解Vue3中简单diff算法的实现

    目录 简单Diff算法 减少DOM操作 例子 结论 实现 DOM复用与key的作用 例子 虚拟节点的key 实现 找到需要移动的元素 探索节点顺序关系 实现 如何移动元素 例子 实现 添加新元素 例子 实现 移除不存在的元素 例子 实现 总结 简单Diff算法 核心Diff只关心新旧虚拟节点都存在一组子节点的情况 减少DOM操作 例子 // 旧节点 const oldVNode = { type: 'div', children: [ { type: 'p', children: '1' },

  • 详解Python中4种超参自动优化算法的实现

    目录 一.网格搜索(Grid Search) 二.随机搜索(Randomized Search) 三.贝叶斯优化(Bayesian Optimization) 四.Hyperband 总结 大家好,要想模型效果好,每个算法工程师都应该了解的流行超参数调优技术. 今天我给大家总结超参自动优化方法:网格搜索.随机搜索.贝叶斯优化 和 Hyperband,并附有相关的样例代码供大家学习. 一.网格搜索(Grid Search) 网格搜索是暴力搜索,在给定超参搜索空间内,尝试所有超参组合,最后搜索出最优

  • 详解python中GPU版本的opencv常用方法介绍

    引言 本篇是以python的视角介绍相关的函数还有自我使用中的一些问题,本想在这篇之前总结一下opencv编译的全过程,但遇到了太多坑,暂时不太想回看做过的笔记,所以这里主要总结python下GPU版本的opencv. 主要函数说明 threshold():二值化,但要指定设定阈值 blendLinear():两幅图片的线形混合 calcHist() createBoxFilter ():创建一个规范化的2D框过滤器 canny边缘检测 createGaussianFilter():创建一个Ga

  • 详解python中asyncio模块

    一直对asyncio这个库比较感兴趣,毕竟这是官网也非常推荐的一个实现高并发的一个模块,python也是在python 3.4中引入了协程的概念.也通过这次整理更加深刻理解这个模块的使用 asyncio 是干什么的? 异步网络操作并发协程 python3.0时代,标准库里的异步网络模块:select(非常底层) python3.0时代,第三方异步网络库:Tornado python3.4时代,asyncio:支持TCP,子进程 现在的asyncio,有了很多的模块已经在支持:aiohttp,ai

  • 详解Python中pyautogui库的最全使用方法

    在使用Python做脚本的话,有两个库可以使用,一个为PyUserInput库,另一个为pyautogui库.就本人而言,我更喜欢使用pyautogui库,该库功能多,使用便利.下面给大家介绍一下pyautogui库的使用方法.在cmd命令框中输入pip3 install pyautogui即可安装该库! 常用操作 我们在pyautogui库中常常使用的方法,如下: import pyautogui pyautogui.PAUSE = 1 # 调用在执行动作后暂停的秒数,只能在执行一些pyaut

  • 详解python opencv图像混合算术运算

    目录 图片相加 cv2.add() 按位运算 图片相加 cv2.add() 要叠加两张图片,可以用 cv2.add() 函数,相加两幅图片的形状(高度 / 宽度 / 通道数)必须相同.         numpy中可以直接用res = img + img1相加,但这两者的结果并不相同(看下边代码):         add()两个图片进行加和,大于255的使用255计数.         numpy会对结果取256(相当于255+1)的模: import numpy as np import c

  • 详解Python中常用的图片处理函数的使用

    目录 cvtColor函数 split()和merge() threshold()函数 自定义threshold函数进行二值化 色度函数applyColorMap cvtColor函数 这个函数有两个参数 1,src 要进行变换的原图像 2,code 转换代码标识 例子: import cv2 image=cv2.imread("ddd.jpg") image1=cv2.cvtColor(image,cv2.COLOR_BGR2BGRA) cv2.imshow(""

  • 详解Python中迭代器和生成器的原理与使用

    目录 1.可迭代对象.迭代器 1.1概念简介 1.2可迭代对象 1.3迭代器 1.4区分可迭代对象和迭代器 1.5可迭代对象和迭代器的关系 1.6可迭代对象和迭代器的工作机制 1.7自己动手创建可迭代对象和迭代器 1.8迭代器的优势 1.9迭代器的缺点和误区 1.10python自带的迭代器工具itertools 2.生成器 2.1生成器的创建方法 2.2生成器方法 2.3生成器的优势 2.4生成器应用场景 3.生成器节省内存.迭代器不节省内存 3.1可迭代对象 3.2迭代器 3.3生成器 3.

  • 详解python中executemany和序列的使用方法

    详解python中executemany和序列的使用方法 一 代码 import sqlite3 persons=[ ("Jim","Green"), ("Hu","jie") ] conn=sqlite3.connect(":memory:") conn.execute("CREATE TABLE person(firstname,lastname)") conn.executeman

随机推荐