Python sklearn中的.fit与.predict的用法说明

我就废话不多说了,大家还是直接看代码吧~

clf=KMeans(n_clusters=5) #创建分类器对象
fit_clf=clf.fit(X) #用训练器数据拟合分类器模型
clf.predict(X) #也可以给新数据数据对其预测

print(clf.cluster_centers_) #输出5个类的聚类中心

y_pred = clf.fit_predict(X) #用训练器数据X拟合分类器模型并对训练器数据X进行预测

print(y_pred) #输出预测结果

补充知识:sklearn中调用某个机器学习模型model.predict(x)和model.predict_proba(x)的区别

model.predict_proba(x)不同于model.predict(),它返回的预测值为获得所有结果的概率。(有多少个分类结果,每行就有多少个概率,对每个结果都有一个概率值,如0、1两分类就有两个概率)

我们直接上代码,通过具体例子来进一步讲解:

python3 代码实现:

# -*- coding: utf-8 -*-
"""
Created on Sat Jul 27 21:25:39 2019

@author: ZQQ
"""
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
import numpy as np
import warnings
warnings.filterwarnings("ignore")
# 这个方法只是解决了表面,没有根治

# 数据(特征,属性)
x_train = np.array([[1,2,3],
          [1,5,4],
          [2,2,2],
          [4,5,6],
          [3,5,4],
          [1,7,2]])
# 数据的标签
y_train = np.array([1, 0, 1, 1, 0, 0]) 

# 测试数据
x_test = np.array([[2,1,2],
          [3,2,6],
          [2,6,4]]) 

# 导入模型
model = LogisticRegression() 

#model = RandomForestClassifier()

#model=XGBClassifier()

model.fit(x_train, y_train)

# 返回预测标签
print(model.predict(x_test)) 

print('---------------------------------------')

# 返回预测属于某标签的概率
print(model.predict_proba(x_test))

运行结果:

分析结果:

使用model.predict() :

预测[2,1,2]为1类

预测[3,2,6]为1类

预测[2,6,4]为0类

使用model.predict_proba() :

预测[2,1,2]的标签是0的概率为0.19442289,1的概率为0.80557711

预测[3,2,6]的标签是0的概率为0.04163615,1的概率为0.95836385

预测[2,6,4]的标签是0的概率为0.83059324,1的概率为0.16940676

预测为0类的概率值和预测为1的概率值和为1

同理,如果标签继续增加,3类:0,1, 2

预测为0类的概率值:a

预测为1类的概率值:b

预测为2类的概率值:c

预测出来的概率值的和a+b+c=1

注:model.predict_proba()返回所有标签值可能性概率值,这些值是如何排序的呢?

返回模型中每个类的样本概率,其中类按类self.classes_进行排序。

通过numpy.unique(label)方法,对label中的所有标签值进行从小到大的去重排序。

得到一个从小到大唯一值的排序。这也就对应于model.predict_proba()的行返回结果。

以上这篇Python sklearn中的.fit与.predict的用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 深入浅析Python 中的sklearn模型选择

    1.主要功能如下: 1.classification分类 2.Regression回归 3.Clustering聚类 4.Dimensionality reduction降维 5.Model selection模型选择 6.Preprocessing预处理 2.主要模块分类: 1.sklearn.base: Base classes and utility function基础实用函数 2.sklearn.cluster: Clustering聚类 3.sklearn.cluster.biclu

  • Python机器学习库scikit-learn安装与基本使用教程

    本文实例讲述了Python机器学习库scikit-learn安装与基本使用.分享给大家供大家参考,具体如下: 引言 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上能够为用户提供各种机器学习算法接口,可以让用户简单.高效地进行数据挖掘和数据分析. scikit-learn安装 python 中安装许多模板库之前都有依赖关系,安装 scikit-learn 之前需要以下先决条件: Python(>= 2.6 or >= 3

  • Python使用sklearn库实现的各种分类算法简单应用小结

    本文实例讲述了Python使用sklearn库实现的各种分类算法简单应用.分享给大家供大家参考,具体如下: KNN from sklearn.neighbors import KNeighborsClassifier import numpy as np def KNN(X,y,XX):#X,y 分别为训练数据集的数据和标签,XX为测试数据 model = KNeighborsClassifier(n_neighbors=10)#默认为5 model.fit(X,y) predicted = m

  • Python使用sklearn实现的各种回归算法示例

    本文实例讲述了Python使用sklearn实现的各种回归算法.分享给大家供大家参考,具体如下: 使用sklearn做各种回归 基本回归:线性.决策树.SVM.KNN 集成方法:随机森林.Adaboost.GradientBoosting.Bagging.ExtraTrees 1. 数据准备 为了实验用,我自己写了一个二元函数,y=0.5*np.sin(x1)+ 0.5*np.cos(x2)+0.1*x1+3.其中x1的取值范围是0~50,x2的取值范围是-10~10,x1和x2的训练集一共有5

  • Python sklearn中的.fit与.predict的用法说明

    我就废话不多说了,大家还是直接看代码吧~ clf=KMeans(n_clusters=5) #创建分类器对象 fit_clf=clf.fit(X) #用训练器数据拟合分类器模型 clf.predict(X) #也可以给新数据数据对其预测 print(clf.cluster_centers_) #输出5个类的聚类中心 y_pred = clf.fit_predict(X) #用训练器数据X拟合分类器模型并对训练器数据X进行预测 print(y_pred) #输出预测结果 补充知识:sklearn中

  • 19个Python Sklearn中超实用的隐藏功能分享

    目录 写在前面 1 .covariance.EllipticEnvelope 2 .feature_selection.RFECV 3 .ensemble.ExtraTrees 4 .impute.IterativeImputer 和 .impute.KNNImputer 5 .linear_model.HuberRegressor 6 .tree.plot_tree 7 .linear_model.Perceptron 8 .feature_selection.SelectFromModel

  • Python sklearn中的K-Means聚类使用方法浅析

    目录 初步认识 初值选取 小批 初步认识 k-means翻译过来就是K均值聚类算法,其目的是将样本分割为k个簇,而这个k则是KMeans中最重要的参数:n_clusters,默认为8. 下面做一个最简单的聚类 import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs X, y = make_blobs(1

  • python 函数中的内置函数及用法详解

    今天来介绍一下Python解释器包含的一系列的内置函数,下面表格按字母顺序列出了内置函数: 下面就一一介绍一下内置函数的用法: 1.abs() 返回一个数值的绝对值,可以是整数或浮点数等. print(abs(-18)) print(abs(0.15)) result: 18 0.15 2.all(iterable) 如果iterable的所有元素不为0.''.False或者iterable为空,all(iterable)返回True,否则返回False. print(all(['a','b',

  • Python numpy中np.random.seed()的详细用法实例

    目录 引言 E.G.实验 E.G.随机数种子参数的作用 补充:一个随机种子在代码中只作用一次,只作用于其定义位置的下一次随机数生成 总结 引言 在进行机器学习和深度学习中,我们会经常用到np.random.seed(),利用随机数种子,使得每次生成的随机数相同. numpy.randn.randn(d0,d1,...,dn) randn函数根据给定维度生成大概率在(-2.58~+2.58)之间的数据 randn函数返回一个或者一组样本,具有标准正态分布 dn表示每个维度 返回值为指定维度的arr

  • Python编程中time模块的一些关键用法解析

    python中time模块其实不难,就是关系转换有点老记不住,先看下图可以说明几个时间对象的的关系.供参考理解. 黑色细箭头表示输入值,参数 深黄色的粗箭头表示返回值,输出格式 绿色圆圈表示各类对象 蓝色方框表示具体的方法 (先import time,在使用time模块中的方法) time.time():获取当前时间的时间戳 time.localtime():接受一个时间戳,并把它转化为一个当前时间的元组.不给参数的话就会默认将time.time()作为参数传入,localtime返回tuple

  • sklearn中的交叉验证的实现(Cross-Validation)

    sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sklearn中关于交叉验证的各种用法,主要是对sklearn官方文档 Cross-validation: evaluating estimator performance进行讲解,英文水平好的建议读官方文档,里面的知识点很详细. 先导入需要的库及数据集 In [1]: import numpy as np In [2]: from sklearn.model_selection impor

  • 浅谈sklearn中predict与predict_proba区别

    predict_proba 返回的是一个 n 行 k 列的数组,列是标签(有排序), 第 i 行 第 j 列上的数值是模型预测 第 i 个预测样本为某个标签的概率,并且每一行的概率和为1. predict 直接返回的是预测 的标签. 具体见下面示例: # conding :utf-8 from sklearn.linear_model import LogisticRegression import numpy as np x_train = np.array([[1,2,3], [1,3,4]

  • python sklearn库实现简单逻辑回归的实例代码

    Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression).降维(Dimensionality Reduction).分类(Classfication).聚类(Clustering)等方法.当我们面临机器学习问题时,便可根据下图来选择相应的方法. Sklearn具有以下特点: 简单高效的数据挖掘和数据分析工具 让每个人能够在复杂环境中重复使用 建立NumPy.Scipy.MatPlotLib之上 代

  • python sklearn包——混淆矩阵、分类报告等自动生成方式

    preface:做着最近的任务,对数据处理,做些简单的提特征,用机器学习算法跑下程序得出结果,看看哪些特征的组合较好,这一系列流程必然要用到很多函数,故将自己常用函数记录上.应该说这些函数基本上都会用到,像是数据预处理,处理完了后特征提取.降维.训练预测.通过混淆矩阵看分类效果,得出报告. 1.输入 从数据集开始,提取特征转化为有标签的数据集,转为向量.拆分成训练集和测试集,这里不多讲,在上一篇博客中谈到用StratifiedKFold()函数即可.在训练集中有data和target开始. 2.

随机推荐