Python Pandas数据分析工具用法实例

1、介绍

Pandas是基于Numpy的专业数据分析工具,可以灵活高效的处理各种数据集,也是我们后期分析案例的神器。它提供了两种类型的数据结构,分别是DataFrame和Series,我们可以简单粗暴的把DataFrame理解为Excel里面的一张表,而Series就是表中的某一列

2、创建DataFrame

# -*- encoding=utf-8 -*-

import pandas

if __name__ == '__main__':
  pass
  test_stu = pandas.DataFrame(
    {'高数': [66, 77, 88, 99, 85],
     '大物': [88, 77, 85, 78, 65],
     '英语': [99, 84, 87, 56, 75]},
  )
  print(test_stu)
  stu = pandas.DataFrame(
    {'高数': [66, 77, 88, 99, 85],
     '大物': [88, 77, 85, 78, 65],
     '英语': [99, 84, 87, 56, 75]},
    index=['小红', '小李', '小白', '小黑', '小青'] # 指定index索引
  )
  print(stu)

运行

高数 大物 英语
0 66 88 99
1 77 77 84
2 88 85 87
3 99 78 56
4 85 65 75
  高数 大物 英语
小红 66 88 99
小李 77 77 84
小白 88 85 87
小黑 99 78 56
小青 85 65 75

3、读取CSV或Excel(.xlsx)进行简单操作(增删改查)

data.csv

# -*- encoding=utf-8 -*-

import pandas

if __name__ == '__main__':
  pass
  data = pandas.read_csv('data.csv', engine='python') # 使用python分析引擎读取csv文件
  print(data.head(5)) # 显示前5行,
  print(data.tail(5)) # 显示后5行
  print(data) # 显示所有数据
  print(data['height']) # 显示height列
  print(data[['height', 'weight']]) # 显示height和weight列
  data.to_csv('write.csv') # 保存到csv文件
  data.to_excel('write.xlsx') # 保存到xlsx文件
  data.info() # 查看数据信息(总行数,有无空缺数据,类型)
  print(data.describe()) # (count非空值,mean均值、std标准差、min最小值、max最大值25%50%75%分位数。)
  data['新增列'] = range(0, len(data)) # 类似字典直接添加即可
  print(data)
  new_data = data.drop('新增列', axis=1, inplace=False)
  # 删除列,如果inplace为True则在源数据删除,返回None,否则返回新数据,不改动源数据
  print(new_data)
  data['体重+身高'] = data['height'] + data['weight']
  print(data)
  data['remark'] = data['remark'].str.replace('to', '') # 操作字符串
  print(data['remark'])
  data['birth'] = pandas.to_datetime(data['birth']) # 转为日期类型
  print(data['birth'])

4、根据条件进行筛选,截取

# -*- encoding=utf-8 -*-

import pandas

if __name__ == '__main__':
  pass
  data = pandas.read_csv('data.csv', engine='python') # 使用python分析引擎读取csv文件
  a = data.iloc[:12, ] # 截取0-12行,列全截
  # print(a)
  b = data.iloc[:, [1, 3]] # 行全截,列1,3
  # print(b)
  c = data.iloc[0:12, 0:4] # 截取行0-12,列0-4
  # print(c)
  d = data['sex'] == 1 # 查看性别为1(男)的
  # print(d)
  f = data.loc[data['sex'] == 1, :] # 查看性别为1(男)的
  # print(f)
  g = data.loc[:, ['weight', 'height']] # 选取身高体重
  # print(g)
  h = data.loc[data['height'].isin([166, 175]), :] # 选取身高166,175的数据
  # print(h)
  h1 = data.loc[data['height'].isin([166, 175]), ['weight', 'height']] # 选取身高166,175的数据
  # print(h1)
  i = data['height'].mean() # 均值
  j = data['height'].std() # 方差
  k = data['height'].median() # 中位数
  l = data['height'].min() # 最小值
  m = data['height'].max() # 最大值
  # print(i)
  # print(j)
  # print(k)
  # print(l)
  # print(m)
  n = data.loc[
    (data['height'] > data['height'].mean()) &
    (data['weight'] > data['weight'].mean()),
    :] # 身高大于身高均值,且体重大于体重均值,不能用and要用&如果是或用|
  print(n)

5、清Nan数据,去重,分组,合并

# -*- encoding=utf-8 -*-

import pandas

if __name__ == '__main__':
  pass
  sheet1 = pandas.read_excel('data.xlsx', sheet_name='Sheet1') # 读取sheet1
  # print(sheet1)
  # print('-------------------------')
  sheet2 = pandas.read_excel('data.xlsx', sheet_name='Sheet2') # 读取sheet2
  # print(sheet2)
  # print('-------------------------')
  a = pandas.concat([sheet1, sheet2]) # 合并
  # print(a)
  # print('-------------------------')
  b = a.dropna() # 删除空数据nan,有nan的就删除
  # print(b)
  # print('-------------------------')
  b1 = a.dropna(subset=['weight']) # 删除指定列的空数据nan
  # print(b1)
  # print('-------------------------')
  c = b.drop_duplicates() # 删除重复数据
  # print(c)
  # print('-------------------------')
  d = b.drop_duplicates(subset=['weight']) # 删除指定列的重复数据
  # print(d)
  # print('-------------------------')
  e = b.drop_duplicates(subset=['weight'], keep='last') # 删除指定列的重复数据,保存最后一个相同数据
  # print(e)
  # print('-------------------------')
  f = a.sort_values(['weight'], ascending=False) # 从大到小排序weight
  # print(f)
  g = c.groupby(['sex']).sum() # 根据sex分组,再求和
  # print(g)
  g1 = c.groupby(['sex'], as_index=False).sum() # 根据sex分组,再求和,但sex不作为索引
  # print(g1)
  g2 = c.groupby(['sex', 'weight']).sum() # 根据sex分组后再根据weight分组,再求和
  # print(g2)
  h = pandas.cut(c['weight'], bins=[80, 90, 100, 150, 200], ) # 根据区间分割体重
  print(h)
  # print('-------------------------')
  c['根据体重分割'] = h # 会有警告,未解决,但不影响结果
  print(c)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python pandas利用fillna方法实现部分自动填充功能

    昨天,我们学习了pandas中的dropna方法,今天,学习一下fillna方法.该方法的主要作用是实现对NaN值的填充功能.该方法主要有3个参数,分别是:value,method,limit等.其余参数可以通过调用help函数获取信息. (1)value 该参数主要是确定填充数值 >>> df = pd.read_excel(r'D:/myExcel/1.xlsx') >>> df name Chinese Chinese.1 id 0 bob 12.0 12 123

  • Python pandas对excel的操作实现示例

    最近经常看到各平台里都有Python的广告,都是对excel的操作,这里明哥收集整理了一下pandas对excel的操作方法和使用过程.本篇介绍 pandas 的 DataFrame 对列 (Column) 的处理方法.示例数据请通过明哥的gitee进行下载. 增加计算列 pandas 的 DataFrame,每一行或每一列都是一个序列 (Series).比如: import pandas as pd df1 = pd.read_excel('./excel-comp-data.xlsx');

  • python pandas dataframe 去重函数的具体使用

    今天笔者想对pandas中的行进行去重操作,找了好久,才找到相关的函数 先看一个小例子 from pandas import Series, DataFrame data = DataFrame({'k': [1, 1, 2, 2]}) print data IsDuplicated = data.duplicated() print IsDuplicated print type(IsDuplicated) data = data.drop_duplicates() print data 执行

  • python pandas.DataFrame.loc函数使用详解

    官方函数 DataFrame.loc Access a group of rows and columns by label(s) or a boolean array. .loc[] is primarily label based, but may also be used with a boolean array. # 可以使用label值,但是也可以使用布尔值 Allowed inputs are: # 可以接受单个的label,多个label的列表,多个label的切片 A singl

  • 解决python pandas读取excel中多个不同sheet表格存在的问题

    摘要:不同方法读取excel中的多个不同sheet表格性能比较 # 方法1 def read_excel(path): df=pd.read_excel(path,None) print(df.keys()) # for k,v in df.items(): # print(k) # print(v) # print(type(v)) return df # 方法2 def read_excel1(path): data_xls = pd.ExcelFile(path) print(data_x

  • Python基于pandas绘制散点图矩阵代码实例

    1.示例 1 代码 import numpy as np import pandas as pd import matplotlib.pyplot as plt # 生成数据 v1 = np.random.normal(0, 1, 100) v2 = np.random.randint(0, 23, 100) v3 = v1 * v2 # 3*100 的数据框 df = pd.DataFrame([v1, v2, v3]).T # 绘制散点图矩阵 pd.plotting.scatter_matr

  • Python pandas如何向excel添加数据

    pandas读取.写入csv数据非常方便,但是有时希望通过excel画个简单的图表看一下数据质量.变化趋势并保存,这时候csv格式的数据就略显不便,因此尝试直接将数据写入excel文件. pandas可以写入一个或者工作簿,两种方法介绍如下: 1.如果是将整个DafaFrame写入excel,则调用to_excel()方法即可实现,示例代码如下: # output为要保存的Dataframe output.to_excel('保存路径 + 文件名.xlsx') 2.有多个数据需要写入多个exce

  • Python连接HDFS实现文件上传下载及Pandas转换文本文件到CSV操作

    1. 目标 通过hadoop hive或spark等数据计算框架完成数据清洗后的数据在HDFS上 爬虫和机器学习在Python中容易实现 在Linux环境下编写Python没有pyCharm便利 需要建立Python与HDFS的读写通道 2. 实现 安装Python模块pyhdfs 版本:Python3.6, hadoop 2.9 读文件代码如下 from pyhdfs import HdfsClient client=HdfsClient(hosts='ghym:50070')#hdfs地址

  • Python Pandas数据分析工具用法实例

    1.介绍 Pandas是基于Numpy的专业数据分析工具,可以灵活高效的处理各种数据集,也是我们后期分析案例的神器.它提供了两种类型的数据结构,分别是DataFrame和Series,我们可以简单粗暴的把DataFrame理解为Excel里面的一张表,而Series就是表中的某一列 2.创建DataFrame # -*- encoding=utf-8 -*- import pandas if __name__ == '__main__': pass test_stu = pandas.DataF

  • Python Pandas数据分析之iloc和loc的用法详解

    Pandas 是一套用于 Python 的快速.高效的数据分析工具.它可以用于数据挖掘和数据分析,同时也提供数据清洗功能.本篇目录如下: 一.iloc 1.定义 iloc索引器用于按位置进行基于整数位置的索引或者选择. 2.语法 df.iloc [row selection, column selection] 3.代码示例 (1)导入数据 (2)选择单行或单列 (3)选择多行或多列 (4)注意 iloc选择一行时返回Series,选择多行返回DataFrame,通过传递列表可转为DataFra

  • Python+pandas计算数据相关系数的实例

    本文主要演示pandas中DataFrame对象corr()方法的用法,该方法用来计算DataFrame对象中所有列之间的相关系数(包括pearson相关系数.Kendall Tau相关系数和spearman秩相关). >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'A':np.random.randint(1, 100, 10), 'B':np.random

  • Python多层装饰器用法实例分析

    本文实例讲述了Python多层装饰器用法.分享给大家供大家参考,具体如下: 前言 Python 的装饰器能够在不破坏函数原本结构的基础上,对函数的功能进行补充.当我们需要对一个函数补充不同的功能,可能需要用到多层的装饰器.在我的使用过程中,遇到了两种装饰器层叠的情况,这里把这两种情况写下来,作为踩坑记录. 情况1 def A(funC): def decorated_C(funE): def decorated_E_by_CA(*args, **kwargs): out = funC(funE)

  • python定时任务 sched模块用法实例

    这篇文章主要介绍了python定时任务 sched模块用法实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 通过sched模块可以实现通过自定义时间,自定义函数,自定义优先级来执行函数. schedule = sched.scheduler( time.time,time.sleep) schedule是一个对象,叫什么名字都可以. schedule.enter(delay,priority,action,arguments) delay:第

  • Python文件操作函数用法实例详解

    这篇文章主要介绍了Python文件操作函数用法实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 字符编码 二进制和字符之间的转换过程 --> 字符编码 ascii,gbk,shit,fuck 每个国家都有自己的编码方式 美国电脑内存中的编码方式为ascii ; 中国电脑内存中的编码方式为gbk , 美国电脑无法识别中国电脑写的程序 , 中国电脑无法识别美国电脑写的程序 现在硬盘中躺着 ascii/gbk/shit/fuck 编码的文件,

  • python定义类self用法实例解析

    这篇文章主要介绍了python定义类self用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在定义类的过程中,无论是显式的创建类的构造方法,还是向类中添加实例方法,都要将self参数作为方法的第一个参数. class Person: def __init__(self): print("正在执行构造方法") def study(self, name): print(name, "正在学python")

  • python中argparse模块用法实例详解

    本文实例讲述了python中argparse模块用法.分享给大家供大家参考.具体分析如下: 平常在写命令行工具的时候,经常会带参数,所以用python中的argparse来实现. # -*- coding: utf-8 -*- import argparse args = "-f hello.txt -n 1 2 3 -x 100 -y b -z a -q hello @args.txt i_am_bar -h".split() # 使用@args.txt要求fromfile_pref

  • Python迭代器与生成器用法实例分析

    本文实例讲述了Python迭代器与生成器用法.分享给大家供大家参考,具体如下: 迭代器,迭代的工具 什么是迭代器? 指的是一个重复的过程,每一次重复称为一次迭代,并且每一次重复的结果是下一次重复的初始值 l=['a','b','c'] count=0 while count <len(l): print(l[count]) count+=1 为什么要有迭代器 1.对于序列类型:str,list,tuple,可以依赖索引来迭代取值 2.对于dict,set,文件,python必须为我们提供一种不依

  • Python pandas RFM模型应用实例详解

    本文实例讲述了Python pandas RFM模型应用.分享给大家供大家参考,具体如下: 什么是RFM模型 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有3个神奇的要素,这3个要素构成了数据分析最好的指标: 最近一次消费 (Recency): 客户最近一次交易时间的间隔.R值越大,表示客户交易距今越久,反之则越近: 消费频率 (Frequency): 客户在最近一段时间内交易的次数.F值越大,表示客户交易越频繁,反之则不够活跃: 消费金额 (Monetary): 客户

随机推荐