pytorch-神经网络拟合曲线实例

代码已经调通,跑出来的效果如下:

# coding=gbk
import torch
import matplotlib.pyplot as plt
from torch.autograd import Variable
import torch.nn.functional as F

'''
 Pytorch是一个拥有强力GPU加速的张量和动态构建网络的库,其主要构建是张量,所以可以把PyTorch当做Numpy
 来用,Pytorch的很多操作好比Numpy都是类似的,但是其能够在GPU上运行,所以有着比Numpy快很多倍的速度。
 训练完了,发现隐层越大,拟合的速度越是快,拟合的效果越是好
'''

def train():
 print('------  构建数据集  ------')
 # torch.linspace是为了生成连续间断的数据,第一个参数表示起点,第二个参数表示终点,第三个参数表示将这个区间分成平均几份,即生成几个数据
 x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
 #torch.rand返回的是[0,1]之间的均匀分布 这里是使用一个计算式子来构造出一个关联结果,当然后期要学的也就是这个式子
 y = x.pow(2) + 0.2 * torch.rand(x.size())
 # Variable是将tensor封装了下,用于自动求导使用
 x, y = Variable(x), Variable(y)
 #绘图展示
 plt.scatter(x.data.numpy(), y.data.numpy())
 #plt.show()

 print('------  搭建网络  ------')
 #使用固定的方式继承并重写 init和forword两个类
 class Net(torch.nn.Module):
  def __init__(self,n_feature,n_hidden,n_output):
   #初始网络的内部结构
   super(Net,self).__init__()
   self.hidden=torch.nn.Linear(n_feature,n_hidden)
   self.predict=torch.nn.Linear(n_hidden,n_output)
  def forward(self, x):
   #一次正向行走过程
   x=F.relu(self.hidden(x))
   x=self.predict(x)
   return x
 net=Net(n_feature=1,n_hidden=1000,n_output=1)
 print('网络结构为:',net)

 print('------  启动训练  ------')
 loss_func=F.mse_loss
 optimizer=torch.optim.SGD(net.parameters(),lr=0.001)

 #使用数据 进行正向训练,并对Variable变量进行反向梯度传播 启动100次训练
 for t in range(10000):
  #使用全量数据 进行正向行走
  prediction=net(x)
  loss=loss_func(prediction,y)
  optimizer.zero_grad() #清除上一梯度
  loss.backward() #反向传播计算梯度
  optimizer.step() #应用梯度

  #间隔一段,对训练过程进行可视化展示
  if t%5==0:
   plt.cla()
   plt.scatter(x.data.numpy(),y.data.numpy()) #绘制真是曲线
   plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=5)
   plt.text(0.5,0,'Loss='+str(loss.data[0]),fontdict={'size':20,'color':'red'})
   plt.pause(0.1)
 plt.ioff()
 plt.show()
 print('------  预测和可视化  ------')

if __name__=='__main__':
 train()

以上这篇pytorch-神经网络拟合曲线实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch-RNN进行回归曲线预测方式

    任务 通过输入的sin曲线与预测出对应的cos曲线 #初始加载包 和定义参数 import torch from torch import nn import numpy as np import matplotlib.pyplot as plt torch.manual_seed(1) #为了可复现 #超参数设定 TIME_SETP=10 INPUT_SIZE=1 LR=0.02 DOWNLoad_MNIST=True 定义RNN网络结构 from torch.autograd import

  • Pytorch 神经网络—自定义数据集上实现教程

    第一步.导入需要的包 import os import scipy.io as sio import numpy as np import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torchvision import transforms, ut

  • PyTorch上搭建简单神经网络实现回归和分类的示例

    本文介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,分享给大家,具体如下: 一.PyTorch入门 1. 安装方法 登录PyTorch官网,http://pytorch.org,可以看到以下界面: 按上图的选项选择后即可得到Linux下conda指令: conda install pytorch torchvision -c soumith 目前PyTorch仅支持MacOS和Linux,暂不支持Windows.安装 PyTorch 会安装两个模块,一个是torch,一个 torch

  • Pytorch实现神经网络的分类方式

    本文用于利用Pytorch实现神经网络的分类!!! 1.训练神经网络分类模型 import torch from torch.autograd import Variable import matplotlib.pyplot as plt import torch.nn.functional as F import torch.utils.data as Data torch.manual_seed(1)#设置随机种子,使得每次生成的随机数是确定的 BATCH_SIZE = 5#设置batch

  • PyTorch上实现卷积神经网络CNN的方法

    一.卷积神经网络 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此CNN在

  • Pytorch: 自定义网络层实例

    自定义Autograd函数 对于浅层的网络,我们可以手动的书写前向传播和反向传播过程.但是当网络变得很大时,特别是在做深度学习时,网络结构变得复杂.前向传播和反向传播也随之变得复杂,手动书写这两个过程就会存在很大的困难.幸运地是在pytorch中存在了自动微分的包,可以用来解决该问题.在使用自动求导的时候,网络的前向传播会定义一个计算图(computational graph),图中的节点是张量(tensor),两个节点之间的边对应了两个张量之间变换关系的函数.有了计算图的存在,张量的梯度计算也

  • pytorch-神经网络拟合曲线实例

    代码已经调通,跑出来的效果如下: # coding=gbk import torch import matplotlib.pyplot as plt from torch.autograd import Variable import torch.nn.functional as F ''' Pytorch是一个拥有强力GPU加速的张量和动态构建网络的库,其主要构建是张量,所以可以把PyTorch当做Numpy 来用,Pytorch的很多操作好比Numpy都是类似的,但是其能够在GPU上运行,所

  • pytorch神经网络之卷积层与全连接层参数的设置方法

    当使用pytorch写网络结构的时候,本人发现在卷积层与第一个全连接层的全连接层的input_features不知道该写多少?一开始本人的做法是对着pytorch官网的公式推,但是总是算错. 后来发现,写完卷积层后可以根据模拟神经网络的前向传播得出这个. 全连接层的input_features是多少.首先来看一下这个简单的网络.这个卷积的Sequential本人就不再啰嗦了,现在看nn.Linear(???, 4096)这个全连接层的第一个参数该为多少呢? 请看下文详解. class AlexN

  • 对Pytorch神经网络初始化kaiming分布详解

    函数的增益值 torch.nn.init.calculate_gain(nonlinearity, param=None) 提供了对非线性函数增益值的计算. 增益值gain是一个比例值,来调控输入数量级和输出数量级之间的关系. fan_in和fan_out pytorch计算fan_in和fan_out的源码 def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.ndimension() if dimensions < 2:

  • TensorFlow 实战之实现卷积神经网络的实例讲解

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeural Network,CNN) 19世纪60年代科学家最早提出感受野(ReceptiveField).当时通过对猫视觉皮层细胞研究,科学家发现每一个视觉神经元只会处理一小块区域的视觉图像,即感受野.20世纪80年代,日本科学家提出神经认知机(Neocognitron)的概念,被视为卷积神经网络最初

  • Python深度学习理解pytorch神经网络批量归一化

    目录 训练深层网络 为什么要批量归一化层呢? 批量归一化层 全连接层 卷积层 预测过程中的批量归一化 使用批量归一化层的LeNet 简明实现 争议 训练深层神经网络是十分困难的,特别是在较短的实践内使他们收敛更加棘手.在本节中,我们将介绍批量归一化(batch normalization),这是一种流行且有效的技术,可持续加速深层网络的收敛速度.在结合之后将介绍的残差快,批量归一化使得研究人员能够训练100层以上的网络. 训练深层网络 为什么要批量归一化层呢? 让我们回顾一下训练神经网络时出现的

  • Python深度学习pytorch神经网络Dropout应用详解解

    目录 扰动的鲁棒性 实践中的dropout 简洁实现 扰动的鲁棒性 在之前我们讨论权重衰减(L2​正则化)时看到的那样,参数的范数也代表了一种有用的简单性度量.简单性的另一个有用角度是平滑性,即函数不应该对其输入的微笑变化敏感.例如,当我们对图像进行分类时,我们预计向像素添加一些随机噪声应该是基本无影响的. dropout在正向传播过程中,计算每一内部层同时注入噪声,这已经成为训练神经网络的标准技术.这种方法之所以被称为dropout,因为我们从表面上看是在训练过程中丢弃(drop out)一些

  • Python深度学习pytorch神经网络图像卷积运算详解

    目录 互相关运算 卷积层 特征映射 由于卷积神经网络的设计是用于探索图像数据,本节我们将以图像为例. 互相关运算 严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation),而不是卷积运算.在卷积层中,输入张量和核张量通过互相关运算产生输出张量. 首先,我们暂时忽略通道(第三维)这一情况,看看如何处理二维图像数据和隐藏表示.下图中,输入是高度为3.宽度为3的二维张量(即形状为 3 × 3 3\times3 3×3).卷积核的高度和宽度都是2. 注意,

  • Python深度学习pytorch神经网络填充和步幅的理解

    目录 填充 步幅 上图中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维度为 2 × 2 2\times2 2×2.从上图可看出卷积的输出形状取决于输入形状和卷积核的形状. 填充 以上面的图为例,在应用多层卷积时,我们常常丢失边缘像素. 解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是0). 例如,在上图中我们将 3 × 3 3\times3 3×3输入填充到 5 × 5 5\times5 5×5,那么它的输出就增加为 4 × 4

随机推荐