基于Tensorflow批量数据的输入实现方式

基于Tensorflow下的批量数据的输入处理:

1.Tensor TFrecords格式

2.h5py的库的数组方法

在tensorflow的框架下写CNN代码,我在书写过程中,感觉不是框架内容难写, 更多的是我在对图像的预处理和输入这部分花了很多精神。

使用了两种方法:

方法一:

Tensor 以Tfrecords的格式存储数据,如果对数据进行标签,可以同时做到数据打标签。

①创建TFrecords文件

orig_image = '/home/images/train_image/'
gen_image = '/home/images/image_train.tfrecords'
def create_record():
  writer = tf.python_io.TFRecordWriter(gen_image)
  class_path = orig_image
  for img_name in os.listdir(class_path): #读取每一幅图像
    img_path = class_path + img_name
    img = Image.open(img_path) #读取图像
    #img = img.resize((256, 256)) #设置图片大小, 在这里可以对图像进行处理
    img_raw = img.tobytes() #将图片转化为原声bytes
    example = tf.train.Example(
         features=tf.train.Features(feature={
             'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[0])), #打标签
             'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))#存储数据
             }))
    writer.write(example.SerializeToString())
  writer.close()

②读取TFrecords文件

def read_and_decode(filename):
  #创建文件队列,不限读取的数据
  filename_queue = tf.train.string_input_producer([filename])
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)

  features = tf.parse_single_example(
      serialized_example,
      features={
          'label': tf.FixedLenFeature([], tf.int64),
          'img_raw': tf.FixedLenFeature([], tf.string)})
  label = features['label']
  img = features['img_raw']
  img = tf.decode_raw(img, tf.uint8) #tf.float32
  img = tf.image.convert_image_dtype(img, dtype=tf.float32)
  img = tf.reshape(img, [256, 256, 1])
  label = tf.cast(label, tf.int32)
  return img, label

③批量读取数据,使用tf.train.batch

min_after_dequeue = 10000
capacity = min_after_dequeue + 3 * batch_size
num_samples= len(os.listdir(orig_image))
create_record()
img, label = read_and_decode(gen_image)
total_batch = int(num_samples/batch_size)
image_batch, label_batch = tf.train.batch([img, label], batch_size=batch_size,
                      num_threads=32, capacity=capacity)
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
with tf.Session() as sess:
  sess.run(init_op)
  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(coord=coord)
  for i in range(total_batch):
     cur_image_batch, cur_label_batch = sess.run([image_batch, label_batch])
  coord.request_stop()
  coord.join(threads)

方法二:

使用h5py就是使用数组的格式来存储数据

这个方法比较好,在CNN的过程中,会使用到多个数据类存储,比较好用, 比如一个数据进行了两种以上的变化,并且分类存储,我认为这个方法会比较好用。

import os
import h5py
import matplotlib.pyplot as plt
import numpy as np
import random
from scipy.interpolate import griddata
from skimage import img_as_float
import matplotlib.pyplot as plt
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
class_path = '/home/awen/Juanjuan/Python Project/train_BSDS/test_gray_0_1/'
for img_name in os.listdir(class_path):
  img_path = class_path + img_name
  img = io.imread(img_path)
  m1 = img_as_float(img)
  m2, m3 = sample_inter1(m1) #一个数据处理的函数
  m1 = m1.reshape([256, 256, 1])
  m2 = m2.reshape([256, 256, 1])
  m3 = m3.reshape([256, 256, 1])
  orig_image.append(m1)
  sample_near.append(m2)
  sample_line.append(m3)

arrorig_image = np.asarray(orig_image) # [?, 256, 256, 1]
arrlsample_near = np.asarray(sample_near) # [?, 256, 256, 1]
arrlsample_line = np.asarray(sample_line) # [?, 256, 256, 1] 

save_path = '/home/awen/Juanjuan/Python Project/train_BSDS/test_sample/train.h5'
def make_data(path):
  with h5py.File(save_path, 'w') as hf:
     hf.create_dataset('orig_image', data=arrorig_image)
     hf.create_dataset('sample_near', data=arrlsample_near)
     hf.create_dataset('sample_line', data=arrlsample_line)

def read_data(path):
  with h5py.File(path, 'r') as hf:
     orig_image = np.array(hf.get('orig_image')) #一定要对清楚上边的标签名orig_image;
     sample_near = np.array(hf.get('sample_near'))
     sample_line = np.array(hf.get('sample_line'))
  return orig_image, sample_near, sample_line
make_data(save_path)
orig_image1, sample_near1, sample_line1 = read_data(save_path)
total_number = len(orig_image1)
batch_size = 20
batch_index = total_number/batch_size
for i in range(batch_index):
  batch_orig = orig_image1[i*batch_size:(i+1)*batch_size]
  batch_sample_near = sample_near1[i*batch_size:(i+1)*batch_size]
  batch_sample_line = sample_line1[i*batch_size:(i+1)*batch_size]

在使用h5py的时候,生成的文件巨大的时候,读取数据显示错误:ioerror: unable to open file (bad object header version number)

基本就是这个生成的文件不能使用,适当的减少存储的数据,即可。

以上这篇基于Tensorflow批量数据的输入实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Tensorflow使用tfrecord输入数据格式

    Tensorflow 提供了一种统一的格式来存储数据,这个格式就是TFRecord,上一篇文章中所提到的方法当数据的来源更复杂,每个样例中的信息更丰富的时候就很难有效的记录输入数据中的信息了,于是Tensorflow提供了TFRecord来统一存储数据,接下来我们就来介绍如何使用TFRecord来同意输入数据的格式. 1. TFRecord格式介绍 TFRecord文件中的数据是通过tf.train.Example Protocol Buffer的格式存储的,下面是tf.train.Exampl

  • TensorFlow数据输入的方法示例

    读取数据(Reading data) TensorFlow输入数据的方式有四种: tf.data API:可以很容易的构建一个复杂的输入通道(pipeline)(首选数据输入方式)(Eager模式必须使用该API来构建输入通道) Feeding:使用Python代码提供数据,然后将数据feeding到计算图中. QueueRunner:基于队列的输入通道(在计算图计算前从队列中读取数据) Preloaded data:用一个constant常量将数据集加载到计算图中(主要用于小数据集) 1. t

  • 基于Tensorflow批量数据的输入实现方式

    基于Tensorflow下的批量数据的输入处理: 1.Tensor TFrecords格式 2.h5py的库的数组方法 在tensorflow的框架下写CNN代码,我在书写过程中,感觉不是框架内容难写, 更多的是我在对图像的预处理和输入这部分花了很多精神. 使用了两种方法: 方法一: Tensor 以Tfrecords的格式存储数据,如果对数据进行标签,可以同时做到数据打标签. ①创建TFrecords文件 orig_image = '/home/images/train_image/' gen

  • 详解tensorflow载入数据的三种方式

    Tensorflow数据读取有三种方式: Preloaded data: 预加载数据 Feeding: Python产生数据,再把数据喂给后端. Reading from file: 从文件中直接读取 这三种有读取方式有什么区别呢? 我们首先要知道TensorFlow(TF)是怎么样工作的. TF的核心是用C++写的,这样的好处是运行快,缺点是调用不灵活.而Python恰好相反,所以结合两种语言的优势.涉及计算的核心算子和运行框架是用C++写的,并提供API给Python.Python调用这些A

  • 基于Tensorflow读取MNIST数据集时网络超时的解决方式

    最近在学习TensorFlow,比较烦人的是使用tensorflow.examples.tutorials.mnist.input_data读取数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('/temp/mnist_data/') X = mnist.test.images.reshape(-1, n_steps, n_inputs) y = mnis

  • 基于TensorFlow中自定义梯度的2种方式

    前言 在深度学习中,有时候我们需要对某些节点的梯度进行一些定制,特别是该节点操作不可导(比如阶梯除法如 ),如果实在需要对这个节点进行操作,而且希望其可以反向传播,那么就需要对其进行自定义反向传播时的梯度.在有些场景,如[2]中介绍到的梯度反转(gradient inverse)中,就必须在某层节点对反向传播的梯度进行反转,也就是需要更改正常的梯度传播过程,如下图的 所示. 在tensorflow中有若干可以实现定制梯度的方法,这里介绍两种. 1. 重写梯度法 重写梯度法指的是通过tensorf

  • Oracle批量插入数据的三种方式【推荐】

    第一种: begin insert into tableName(column1, column2, column3...) values(value1,value2,value3...); insert into tableName(column1, column2, column3...) values(value1,value2,value3...); insert into tableName(column1, column2, column3...) values(value1,val

  • 基于$.ajax()方法从服务器获取json数据的几种方式总结

    一.什么是json json是一种取代xml的数据结构,和xml相比,它更小巧但描述能力却很强,网络传输数据使用流量更少,速度更快. json就是一串字符串,使用下面的符号标注. {键值对} : json对象 [{},{},{}] :json数组 "" :双引号内是属性或值 : :冒号前为键,后为值(这个值可以是基本数据类型的值,也可以是数组或对象),所以 {"age": 18} 可以理解为是一个包含age为18的json对象,而[{"age":

  • 基于tensorflow指定GPU运行及GPU资源分配的几种方式小结

    1. 在终端执行时设置使用哪些GPU(两种方式) (1) 如下(export 语句执行一次就行了,以后再运行代码不用执行) (2) 如下 2. 代码中指定(两种方式) (1) import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" (2) # Creates a graph. with tf.device('/gpu:1'): a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0],

  • 浅谈TensorFlow中读取图像数据的三种方式

    本文面对三种常常遇到的情况,总结三种读取数据的方式,分别用于处理单张图片.大量图片,和TFRecorder读取方式.并且还补充了功能相近的tf函数. 1.处理单张图片 我们训练完模型之后,常常要用图片测试,有的时候,我们并不需要对很多图像做测试,可能就是几张甚至一张.这种情况下没有必要用队列机制. import tensorflow as tf import matplotlib.pyplot as plt def read_image(file_name): img = tf.read_fil

  • SQLServer批量插入数据的三种方式及性能对比

    昨天下午快下班的时候,无意中听到公司两位同事在探讨批量向数据库插入数据的性能优化问题,顿时来了兴趣,把自己的想法向两位同事说了一下,于是有了本文. 公司技术背景:数据库访问类(xxx.DataBase.Dll)调用存储过程实现数据库的访问. 技术方案一: 压缩时间下程序员写出的第一个版本,仅仅为了完成任务,没有从程序上做任何优化,实现方式是利用数据库访问类调用存储过程,利用循环逐条插入.很明显,这种方式效率并不高,于是有了前面的两位同事讨论效率低的问题. 技术方案二: 由于是考虑到大数据量的批量

  • 基于TensorFlow的CNN实现Mnist手写数字识别

    本文实例为大家分享了基于TensorFlow的CNN实现Mnist手写数字识别的具体代码,供大家参考,具体内容如下 一.CNN模型结构 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积:感受视野5*5,步长为1,卷积核:64个 第二层池化:池化视野2*2,步长为2 全连接层:设置1024个神经元 输出层:0~9十个数字类别 二.代码实现 import tensorflow as tf #Tensorfl

随机推荐