Python基于LightGBM进行时间序列预测

目录
  • 前言
  • 特征
  • 代码
  • 结果

前言

当我们考虑时间序列的增强树时,通常会想到 M5 比赛,其中前十名中有很大一部分使用了 LightGBM。但是当在单变量情况下使用增强树时,由于没有大量的外生特征可以利用,它的性能非常的糟糕。

首先需要明确的是M4 比赛的亚军 DID 使用了增强树。但是它作为一个元模型来集成其他更传统的时间序列方法。在 M4 上公开的代码中,所有标准增强树的基准测试都相当糟糕,有时甚至还达不到传统的预测方法。下面是Sktime 包和他们的论文所做的出色工作[1]:

任何带有“XGB”或“RF”的模型都使用基于树的集成。在上面的列表中 Xgboost 在每小时数据集中提供了 10.9 的最佳结果!然后,但是这些模型只是Sktime 在他们框架中做过的简单尝试,而 M4 的获胜者在同一数据集上的得分是 9.3 分……。在该图表中我们需要记住一些数字,例如来自 XGB-s 的每小时数据集的 10.9 和每周数据集中的树性模型的“最佳”结果:来自 RF-t-s 的 9.0。

从上图中就引出了我们的目标:创建一个基于LightGBM并且适合个人使用的时间序列的快速建模程序,并且能够绝对超越这些数字,而且在速度方面可与传统的统计方法相媲美。

听起来很困难,并且我们的第一个想法可能是必须优化我们的树。但是提升树非常复杂,改动非常费时,并且结果并不一定有效。但是有一点好处是我们正在拟合是单个数据集,是不是可从特征下手呢?

特征

在查看单变量空间中树的其他实现时都会看到一些特征工程,例如分箱、使用目标的滞后值、简单的计数器、季节性虚拟变量,也许还有傅里叶函数。这对于使用传统的指数平滑等方法是非常棒的。但是我们今天目的是必须对时间元素进行特征化并将其表示为表格数据以提供给树型模型,LazyProphet这时候就出现了。除此以外,LazyProphet还包含一个额外的特征工程元素:将点”连接”起来。

很简单,将时间序列的第一个点连接起来,并将一条线连接到中途的另一个点,然后将中途的点连接到最后一个点。重复几次,同时更改将哪个点用作“kink”(中间节点),这就是我们所说的“连接”。

下面张图能很好地说明这一点。蓝线是时间序列,其他线只是“连接点”:

事实证明,这些只是加权分段线性基函数。这样做的一个缺点是这些线的外推可能会出现偏差。为了解决这个问题,引入一个惩罚从中点到最后点的每条线的斜率的“衰减”因子。

在这个基础上加滞后的目标值和傅里叶基函数,在某些问题上就能够接近最先进的性能。因为要求很少,因因此我们把它称作“LazyProphet”。

下面我们看看实际的应用结果。

代码

这里使用的数据集都是开源的,并在M-competitions github上发布。数据已经被分割为训练和测试集,我们直接使用训练csv进行拟合,而测试csv用于使用SMAPE进行评估。现在导入LazyProphet:

pip install LazyProphet

安装后,开始编码:

import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import pandas as pd
from LazyProphet import LazyProphet as lp

train_df = pd.read_csv(r'm4-weekly-train.csv')
test_df = pd.read_csv(r'm4-weekly-test.csv')
train_df.index = train_df['V1']
train_df = train_df.drop('V1', axis = 1)
test_df.index = test_df['V1']
test_df = test_df.drop('V1', axis = 1)

导入所有必要的包后将读入每周数据。创建 SMAPE 函数,它将返回给定预测和实际值的 SMAPE:

def smape(A, F):
  return 100/len(A) * np.sum(2 * np.abs(F - A) / (np.abs(A) +       np.abs(F)))

对于这个实验将取所有时间序列的平均值与其他模型进行比较。为了进行健全性检查,我们还将获得的平均 SMAPE,这样可以确保所做的与比赛中所做的一致。

smapes = []
naive_smape = []
j = tqdm(range(len(train_df)))
for row in j:
  y = train_df.iloc[row, :].dropna()
  y_test = test_df.iloc[row, :].dropna()
  j.set_description(f'{np.mean(smapes)}, {np.mean(naive_smape)}')
  lp_model = LazyProphet(scale=True,
                          seasonal_period=52,
                          n_basis=10,
                          fourier_order=10,
                          ar=list(range(1, 53)),
                          decay=.99,
                          linear_trend=None,
                          decay_average=False)
  fitted = lp_model.fit(y)
  predictions = lp_model.predict(len(y_test)).reshape(-1)
  smapes.append(smape(y_test.values,     pd.Series(predictions).clip(lower=0)))
  naive_smape.append(smape(y_test.values, np.tile(y.iloc[-1], len(y_test))))
print(np.mean(smapes))
print(np.mean(naive_smape))

在查看结果之前,快速介绍一下 LazyProphet 参数。

scale:这个很简单,只是是否对数据进行缩放。默认值为 True 。

seasonal_period:此参数控制季节性的傅立叶基函数,因为这是我们使用 52 的每周频率。

n_basis:此参数控制加权分段线性基函数。这只是要使用的函数数量的整数。

Fourier_order:用于季节性的正弦和余弦对的数量。

ar:要使用的滞后目标变量值。可以获取多个列表 1-52 。

decay:衰减因子用于惩罚我们的基函数的“右侧”。设置为 0.99 表示斜率乘以 (1- 0.99) 或 0.01。

linear_trend:树的一个主要缺点是它们无法推断出后续数据的范围。为了克服这个问题,有一些针对多项式趋势的现成测试将拟合线性回归以消除趋势。None 表示有测试,通过 True 表示总是去趋势,通过 False 表示不测试并且不使用线性趋势。

decay_average:在使用衰减率时不是一个有用的参数。这是一个trick但不要使用它。传递 True 只是平均基函数的所有未来值。这在与 elasticnet 程序拟合时很有用,但在测试中对 LightGBM 的用处不大。

下面继续处理数据:

train_df = pd.read_csv(r'm4-hourly-train.csv')
test_df = pd.read_csv(r'm4-hourly-test.csv')
train_df.index = train_df['V1']
train_df = train_df.drop('V1', axis = 1)
test_df.index = test_df['V1']
test_df = test_df.drop('V1', axis = 1)

smapes = []
naive_smape = []
j = tqdm(range(len(train_df)))
for row in j:
  y = train_df.iloc[row, :].dropna()
  y_test = test_df.iloc[row, :].dropna()
  j.set_description(f'{np.mean(smapes)}, {np.mean(naive_smape)}')
  lp_model = LazyProphet(seasonal_period=[24,168],
                          n_basis=10,
                          fourier_order=10,
                          ar=list(range(1, 25)),
                          decay=.99)
  fitted = lp_model.fit(y)
  predictions = lp_model.predict(len(y_test)).reshape(-1)
  smapes.append(smape(y_test.values, pd.Series(predictions).clip(lower=0)))
  naive_smape.append(smape(y_test.values, np.tile(y.iloc[-1], len(y_test))))
print(np.mean(smapes))
print(np.mean(naive_smape))

所以真正需要修改是seasonal_period 和ar 参数。将list传递给seasonal_period 时,它将为列表中的所有内容构建季节性基函数。ar 进行了调整以适应新的主要季节 24。

结果

对于上面的 Sktime 结果,表格如下:

LazyProphet 击败了 Sktime 最好的模型,其中包括几种不同的基于树的方法。在每小时数据集上输给给了 M4 的获胜者,但平均而言总体上优于 ES-RNN。这里要意识到的重要一点是,只使用默认参数进行了此操作……

boosting_params = {
                  "objective": "regression",
                  "metric": "rmse",
                  "verbosity": -1,
                  "boosting_type": "gbdt",
                  "seed": 42,
                  'linear_tree': False,
                  'learning_rate': .15,
                  'min_child_samples': 5,
                  'num_leaves': 31,
                  'num_iterations': 50
                  }

可以在创建 LazyProphet 类时传递你参数的字典,可以针对每个时间序列进行优化,以获得更多收益。

对比一下我们的结果和上面提到的目标:

进行了零参数优化(针对不同的季节性稍作修改)

分别拟合每个时间序列

在我的本地机器上在一分钟内“懒惰地”生成了预测。

在基准测试中击败了所有其他树方法

目前看是非常成功的,但是成功可能无法完全的复制,因为他数据集的数据量要少得多,因此我们的方法往往会显着降低性能。根据测试LazyProphet 在高频率和大量数据量上表现的更好,但是LazyProphet还是一个时间序列建模的很好选择,我们不需要花多长时间进行编码就能够测试,这点时间还是很值得。

到此这篇关于Python基于LightGBM进行时间序列预测的文章就介绍到这了,更多相关Python LightGBM时间序列预测内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 如何用Python进行时间序列分解和预测

    预测是一件复杂的事情,在这方面做得好的企业会在同行业中出类拔萃.时间序列预测的需求不仅存在于各类业务场景当中,而且通常需要对未来几年甚至几分钟之后的时间序列进行预测.如果你正要着手进行时间序列预测,那么本文将带你快速掌握一些必不可少的概念. 目录 什么是时间序列? 如何在Python中绘制时间序列数据? 时间序列的要素是什么? 如何分解时间序列? 经典分解法 如何获得季节性调整值? STL分解法 时间序列预测的基本方法: Python中的简单移动平均(SMA) 为什么使用简单移动平均? Pyth

  • Python机器学习应用之基于LightGBM的分类预测篇解读

    目录 一.Introduction 1 LightGBM的优点 2 LightGBM的缺点 二.实现过程 1 数据集介绍 2 Coding 三.Keys LightGBM的重要参数 基本参数调整 针对训练速度的参数调整 针对准确率的参数调整 针对过拟合的参数调整 一.Introduction LightGBM是扩展机器学习系统.是一款基于GBDT(梯度提升决策树)算法的分布梯度提升框架.其设计思路主要集中在减少数据对内存与计算性能的使用上,以及减少多机器并行计算时的通讯代价 1 LightGBM

  • 详解用Python进行时间序列预测的7种方法

    数据准备 数据集(JetRail高铁的乘客数量)下载. 假设要解决一个时序问题:根据过往两年的数据(2012 年 8 月至 2014 年 8月),需要用这些数据预测接下来 7 个月的乘客数量. import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv('train.csv') df.head() df.shape 依照上面的代码,我们获得了 2012-2014 年两年每个小时的乘

  • Python中利用LSTM模型进行时间序列预测分析的实现

    时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的. 举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化:根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等 RNN 和 LSTM 模型 时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural n

  • Python基于LightGBM进行时间序列预测

    目录 前言 特征 代码 结果 前言 当我们考虑时间序列的增强树时,通常会想到 M5 比赛,其中前十名中有很大一部分使用了 LightGBM.但是当在单变量情况下使用增强树时,由于没有大量的外生特征可以利用,它的性能非常的糟糕. 首先需要明确的是M4 比赛的亚军 DID 使用了增强树.但是它作为一个元模型来集成其他更传统的时间序列方法.在 M4 上公开的代码中,所有标准增强树的基准测试都相当糟糕,有时甚至还达不到传统的预测方法.下面是Sktime 包和他们的论文所做的出色工作[1]: 任何带有“X

  • python基于机器学习预测股票交易信号

    引言 近年来,随着技术的发展,机器学习和深度学习在金融资产量化研究上的应用越来越广泛和深入.目前,大量数据科学家在Kaggle网站上发布了使用机器学习/深度学习模型对股票.期货.比特币等金融资产做预测和分析的文章.从金融投资的角度看,这些文章可能缺乏一定的理论基础支撑(或交易思维),大都是基于数据挖掘.但从量化的角度看,有很多值得我们学习参考的地方,尤其是Pyhton的深入应用.数据可视化和机器学习模型的评估与优化等.下面借鉴Kaggle上的一篇文章<Building an Asset Trad

  • Python机器学习应用之基于BP神经网络的预测篇详解

    目录 一.Introduction 1 BP神经网络的优点 2 BP神经网络的缺点 二.实现过程 1 Demo 2 基于BP神经网络的乳腺癌分类预测 三.Keys 一.Introduction 1 BP神经网络的优点 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数.这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力. 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输

  • 时间序列预测中的数据滑窗操作实例(python实现)

    目录 撰写背景 什么是数据滑窗 代码实现 单特征时间序列 多特征时间序列 注意事项 总结 撰写背景 面向数据分析的小白,水平有限,错误难免,欢迎指正. 什么是数据滑窗 进行机器学习时,一般都要涉及到划分训练集和测试集的步骤.特别地,在做数据预测时,一般把预测的依据(也就是历史数据)称作X,把需要预测的数据称为y.即首先把原始数据划分为train_X, train_y这两个训练数据集和test_X, test_y这两个测试数据集. 对于时间序列数据的预测,往往是建立由好几个历史数据预测下一时刻的未

  • Python中LSTM回归神经网络时间序列预测详情

    前言: 这个问题是国际航空乘客预测问题, 数据是1949年1月到1960年12月国际航空公司每个月的乘客数量(单位:千人),共有12年144个月的数据.数据趋势: 训练程序: import numpy as np import pandas as pd import matplotlib.pyplot as plt import torch from torch import nn from torch.autograd import Variable #LSTM(Long Short-Term

  • Pytorch 如何实现LSTM时间序列预测

    开发环境说明: Python 35 Pytorch 0.2 CPU/GPU均可 1.LSTM简介 人类在进行学习时,往往不总是零开始,学习物理你会有数学基础.学习英语你会有中文基础等等. 于是对于机器而言,神经网络的学习亦可不再从零开始,于是出现了Transfer Learning,就是把一个领域已训练好的网络用于初始化另一个领域的任务,例如会下棋的神经网络可以用于打德州扑克. 我们这讲的是另一种不从零开始学习的神经网络--循环神经网络(Recurrent Neural Network, RNN

  • Python与AI分析时间序列数据

    目录 简介 序列分析或时间序列分析的基本概念 安装实用软件包 Pandas hmmlearn PyStruct CVXOPT Pandas:处理,切片和从时间序列数据中提取统计数据 示例 处理时间序列数据 切片时间序列数据 提取来自时间序列数据的统计数据 平均值 最大值 最小值 一次性获取所有内容 重新采样 使用mean()重新采样 Re -sampling with median() 滚动平均值 通过隐马尔可夫分析顺序数据模型(HMM) 隐马尔可夫模型(HMM) 状态(S) 输出符号(O) 状

随机推荐