keras分类之二分类实例(Cat and dog)

1. 数据准备

在文件夹下分别建立训练目录train,验证目录validation,测试目录test,每个目录下建立dogs和cats两个目录,在dogs和cats目录下分别放入拍摄的狗和猫的图片,图片的大小可以不一样。

2. 数据读取

# 存储数据集的目录
base_dir = 'E:/python learn/dog_and_cat/data/'

# 训练、验证数据集的目录
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')

# 猫训练图片所在目录
train_cats_dir = os.path.join(train_dir, 'cats')

# 狗训练图片所在目录
train_dogs_dir = os.path.join(train_dir, 'dogs')

# 猫验证图片所在目录
validation_cats_dir = os.path.join(validation_dir, 'cats')

# 狗验证数据集所在目录
validation_dogs_dir = os.path.join(validation_dir, 'dogs')

print('total training cat images:', len(os.listdir(train_cats_dir)))
print('total training dog images:', len(os.listdir(train_dogs_dir)))
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))

3. 模型建立

# 搭建模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu',
         input_shape=(150, 150, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

print(model.summary())

model.compile(loss='binary_crossentropy',
       optimizer=RMSprop(lr=1e-4),
       metrics=['acc'])

4. 模型训练

train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
  train_dir, # target directory
  target_size=(150, 150), # resize图片
  batch_size=20,
  class_mode='binary'
)

validation_generator = test_datagen.flow_from_directory(
  validation_dir,
  target_size=(150, 150),
  batch_size=20,
  class_mode='binary'
)

for data_batch, labels_batch in train_generator:
  print('data batch shape:', data_batch.shape)
  print('labels batch shape:', labels_batch.shape)
  break

hist = model.fit_generator(
  train_generator,
  steps_per_epoch=100,
  epochs=10,
  validation_data=validation_generator,
  validation_steps=50
)

model.save('cats_and_dogs_small_1.h5')

5. 模型评估

acc = hist.history['acc']
val_acc = hist.history['val_acc']
loss = hist.history['loss']
val_loss = hist.history['val_loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')

plt.legend()
plt.figure()

plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.legend()
plt.show()

6. 预测

imagename = 'E:/python learn/dog_and_cat/data/validation/dogs/dog.2026.jpg'
test_image = image.load_img(imagename, target_size = (150, 150))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis=0)
result = model.predict(test_image)

if result[0][0] == 1:
  prediction ='dog'
else:
  prediction ='cat'

print(prediction)

代码在spyder下运行正常,一般情况下,可以将文件分为两个部分,一部分为Train.py,包含深度学习模型建立、训练和模型的存储,另一部分Predict.py,包含模型的读取,评价和预测

补充知识:keras 猫狗大战自搭网络以及vgg16应用

导入模块

import os
import numpy as np
import tensorflow as tf
import random
import seaborn as sns
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Activation, Flatten, Input,BatchNormalization
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.optimizers import RMSprop, Adam, SGD
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.vgg16 import VGG16, preprocess_input

from sklearn.model_selection import train_test_split

加载数据集

def read_and_process_image(data_dir,width=64, height=64, channels=3, preprocess=False):
  train_images= [data_dir + i for i in os.listdir(data_dir)]

  random.shuffle(train_images)

  def read_image(file_path, preprocess):
    img = image.load_img(file_path, target_size=(height, width))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    # if preprocess:
      # x = preprocess_input(x)
    return x

  def prep_data(images, proprocess):
    count = len(images)
    data = np.ndarray((count, height, width, channels), dtype = np.float32)

    for i, image_file in enumerate(images):
      image = read_image(image_file, preprocess)
      data[i] = image

    return data

  def read_labels(file_path):
    labels = []
    for i in file_path:
      label = 1 if 'dog' in i else 0
      labels.append(label)

    return labels

  X = prep_data(train_images, preprocess)
  labels = read_labels(train_images)

  assert X.shape[0] == len(labels)
  print("Train shape: {}".format(X.shape))
  return X, labels

读取数据集

# 读取图片
WIDTH = 150
HEIGHT = 150
CHANNELS = 3
X, y = read_and_process_image('D:\\Python_Project\\train\\',width=WIDTH, height=HEIGHT, channels=CHANNELS)

查看数据集信息

# 统计y
sns.countplot(y)

# 显示图片
def show_cats_and_dogs(X, idx):
  plt.figure(figsize=(10,5), frameon=True)
  img = X[idx,:,:,::-1]
  img = img/255
  plt.imshow(img)
  plt.show()

for idx in range(0,3):
  show_cats_and_dogs(X, idx)

train_X = X[0:17500,:,:,:]
train_y = y[0:17500]
test_X = X[17500:25000,:,:,:]
test_y = y[17500:25000]
train_X.shape
test_X.shape

自定义神经网络层数

input_layer = Input((WIDTH, HEIGHT, CHANNELS))
# 第一层
z = input_layer
z = Conv2D(64, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)

z = Conv2D(64, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)

z = Conv2D(128, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)

z = Conv2D(128, (3,3))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = MaxPooling2D(pool_size = (2,2))(z)

z = Flatten()(z)
z = Dense(64)(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = Dropout(0.5)(z)
z = Dense(1)(z)
z = Activation('sigmoid')(z)

model = Model(input_layer, z)

model.compile(
  optimizer = keras.optimizers.RMSprop(),
  loss = keras.losses.binary_crossentropy,
  metrics = [keras.metrics.binary_accuracy]
)

model.summary()

训练模型

history = model.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=10,batch_size=128,verbose=True)
score = model.evaluate(test_X, test_y, verbose=0)
print("Large CNN Error: %.2f%%" %(100-score[1]*100))

复用vgg16模型

def vgg16_model(input_shape= (HEIGHT,WIDTH,CHANNELS)):
  vgg16 = VGG16(include_top=False, weights='imagenet',input_shape=input_shape)

  for layer in vgg16.layers:
    layer.trainable = False
  last = vgg16.output
  # 后面加入自己的模型
  x = Flatten()(last)
  x = Dense(256, activation='relu')(x)
  x = Dropout(0.5)(x)
  x = Dense(256, activation='relu')(x)
  x = Dropout(0.5)(x)
  x = Dense(1, activation='sigmoid')(x)

  model = Model(inputs=vgg16.input, outputs=x)

  return model

编译模型

model_vgg16 = vgg16_model()
model_vgg16.summary()
model_vgg16.compile(loss='binary_crossentropy',optimizer = Adam(0.0001), metrics = ['accuracy'])

训练模型

# 训练模型
history = model_vgg16.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=5,batch_size=128,verbose=True)
score = model_vgg16.evaluate(test_X, test_y, verbose=0)
print("Large CNN Error: %.2f%%" %(100-score[1]*100))

以上这篇keras分类之二分类实例(Cat and dog)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 在Keras中CNN联合LSTM进行分类实例

    我就废话不多说,大家还是直接看代码吧~ def get_model(): n_classes = 6 inp=Input(shape=(40, 80)) reshape=Reshape((1,40,80))(inp) # pre=ZeroPadding2D(padding=(1, 1))(reshape) # 1 conv1=Convolution2D(32, 3, 3, border_mode='same',init='glorot_uniform')(reshape) #model.add(

  • 浅谈keras中自定义二分类任务评价指标metrics的方法以及代码

    对于二分类任务,keras现有的评价指标只有binary_accuracy,即二分类准确率,但是评估模型的性能有时需要一些其他的评价指标,例如精确率,召回率,F1-score等等,因此需要使用keras提供的自定义评价函数功能构建出针对二分类任务的各类评价指标. keras提供的自定义评价函数功能需要以如下两个张量作为输入,并返回一个张量作为输出. y_true:数据集真实值组成的一阶张量. y_pred:数据集输出值组成的一阶张量. tf.round()可对张量四舍五入,因此tf.round(

  • keras实现多种分类网络的方式

    Keras应该是最简单的一种深度学习框架了,入门非常的简单. 简单记录一下keras实现多种分类网络:如AlexNet.Vgg.ResNet 采用kaggle猫狗大战的数据作为数据集. 由于AlexNet采用的是LRN标准化,Keras没有内置函数实现,这里用batchNormalization代替 收件建立一个model.py的文件,里面存放着alexnet,vgg两种模型,直接导入就可以了 #coding=utf-8 from keras.models import Sequential f

  • keras分类之二分类实例(Cat and dog)

    1. 数据准备 在文件夹下分别建立训练目录train,验证目录validation,测试目录test,每个目录下建立dogs和cats两个目录,在dogs和cats目录下分别放入拍摄的狗和猫的图片,图片的大小可以不一样. 2. 数据读取 # 存储数据集的目录 base_dir = 'E:/python learn/dog_and_cat/data/' # 训练.验证数据集的目录 train_dir = os.path.join(base_dir, 'train') validation_dir

  • Pytorch 实现focal_loss 多类别和二分类示例

    我就废话不多说了,直接上代码吧! import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # 支持多分类和二分类 class FocalLoss(nn.Module): """ This is a implementation of Focal Loss with smooth label cross entropy supported which is pro

  • Keras中的多分类损失函数用法categorical_crossentropy

    from keras.utils.np_utils import to_categorical 注意:当使用categorical_crossentropy损失函数时,你的标签应为多类模式,例如如果你有10个类别,每一个样本的标签应该是一个10维的向量,该向量在对应有值的索引位置为1其余为0. 可以使用这个方法进行转换: from keras.utils.np_utils import to_categorical categorical_labels = to_categorical(int_

  • python实现二分类和多分类的ROC曲线教程

    基本概念 precision:预测为对的当中,原本为对的比例(越大越好,1为理想状态) recall:原本为对的当中,预测为对的比例(越大越好,1为理想状态) F-measure:F度量是对准确率和召回率做一个权衡(越大越好,1为理想状态,此时precision为1,recall为1) accuracy:预测对的(包括原本是对预测为对,原本是错的预测为错两种情形)占整个的比例(越大越好,1为理想状态) fp rate:原本是错的预测为对的比例(越小越好,0为理想状态) tp rate:原本是对的

  • 机器深度学习二分类电影的情感问题

    二分类问题可能是应用最广泛的机器学习问题.今天我们将学习根据电影评论的文字内容将其划分为正面或负面. 一.数据集来源 我们使用的是IMDB数据集,它包含来自互联网电影数据库(IMDB)的50000条严重两极分化的评论.为了避免模型过拟合只记住训练数据,我们将数据集分为用于训练的25000条评论与用于测试的25000条评论,训练集和测试集都包含50%的正面评论和50%的负面评论. 与MNIST数据集一样,IMDB数据集也内置于Keras库.它已经过预处理:评论(单词序列)已经被转换为整数序列,其中

  • 运用JSP+ajax实现分类查询功能的实例代码

    本文主要是介绍了运用JSP+ajax实现分类查询功能的实例代码,分享给大家供大家参考,具体如下: 这次是对小学期关于大学毕业生信息管理系统课程设计中遇到的一些问题和解决方法进行记录和分享. 题目要求:提供企业招聘信息(本年度或历年)查询功能: 首先建立一个jsp文件用来显示数据库信息,并在上面加输入条件的文本框和查询按钮,在这个jsp文件中需要完成一个js函数在用于完成查询功能. <%@ page language="java" pageEncoding="UTF-8&

  • 使用TensorFlow实现二分类的方法示例

    使用TensorFlow构建一个神经网络来实现二分类,主要包括输入数据格式.隐藏层数的定义.损失函数的选择.优化函数的选择.输出层.下面通过numpy来随机生成一组数据,通过定义一种正负样本的区别,通过TensorFlow来构造一个神经网络来实现二分类. 一.神经网络结构 输入数据:定义输入一个二维数组(x1,x2),数据通过numpy来随机产生,将输出定义为0或1,如果x1+x2<1,则y为1,否则y为0. 隐藏层:定义两层隐藏层,隐藏层的参数为(2,3),两行三列的矩阵,输入数据通过隐藏层之

  • python实现二分类的卡方分箱示例

    解决的问题: 1.实现了二分类的卡方分箱: 2.实现了最大分组限定停止条件,和最小阈值限定停止条件: 问题,还不太清楚,后续补充. 1.自由度k,如何来确定,卡方阈值的自由度为 分箱数-1,显著性水平可以取10%,5%或1% 算法扩展: 1.卡方分箱除了用阈值来做约束条件,还可以进一步的加入分箱数约束,以及最小箱占比,坏人率约束等. 2.需要实现更多分类的卡方分箱算法: 具体代码如下: # -*- coding: utf-8 -*- """ Created on Wed No

  • Python实现Keras搭建神经网络训练分类模型教程

    我就废话不多说了,大家还是直接看代码吧~ 注释讲解版: # Classifier example import numpy as np # for reproducibility np.random.seed(1337) # from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Act

随机推荐