PHP机器学习库php-ml的简单测试和使用方法

php-ml是一个使用PHP编写的机器学习库。虽然我们知道,python或者是C++提供了更多机器学习的库,但实际上,他们大多都略显复杂,配置起来让很多新手感到绝望。

php-ml这个机器学习库虽然没有特别高大上的算法,但其具有最基本的机器学习、分类等算法,我们的小公司做一些简单的数据分析、预测等等都是够用的。我们的项目中,追求的应该是性价比,而不是过分的效率和精度。一些算法和库看上去非常厉害,但如果我们考虑快速上线,而我们的技术人员没有机器学习方面的经验,那么复杂的代码和配置反而会拖累我们的项目。而如果我们本身就是做一个简单的机器学习应用,那么研究复杂库和算法的学习成本很显然高了点,而且,项目出了奇奇怪怪的问题,我们能解决吗?需求改变了怎么办?相信大家都有过这种经历:做着做着,程序忽然报错,自己怎么都搞不清楚原因,上谷歌或百度一搜,只搜出一条满足条件的问题,在五年、十年前提问,然后零回复。。。

所以,选择最简单最高效、性价比最高的做法是必须的。php-ml的速度不算慢(赶紧换php7吧),而且精度也不错,毕竟算法都一样,而且php是基于c的。博主最看不惯的就是,拿python和Java,PHP之间比性能,比适用范围。真要性能,请你拿C开发。真要追求适用范围,也请用C,甚至汇编。。。

首先,我们要使用这个库,需要先下载这个库。在github可以下载到这个库文件(https://github.com/php-ai/php-ml)。当然,更推荐使用composer来下载该库,自动配置。

当下载好了以后,我们可以看一看这个库的文档,文档都是一些简单的小示例,我们可以自己建一个文件尝试一下。都浅显易懂。接下来,我们来拿实际的数据测试一下。数据集一个是Iris花蕊的数据集,另一个由于记录丢失,所以不知道是有关什么的数据了。。。

Iris花蕊部分数据,有三种不同的分类:

不知名数据集,小数点被打成了逗号,所以计算时还需要处理一下:

我们先处理不知名数据集。首先,我们的不知名数据集的文件名为data.txt。而这个数据集刚好可以先绘制成x-y折线图。所以,我们先将原数据绘制成一个折线图。由于x轴比较长,所以我们只需要看清楚它大致的形状即可:

绘制采用了php的jpgraph库,代码如下:

<?php
include_once './src/jpgraph.php';
include_once './src/jpgraph_line.php';

$g = new Graph(1920,1080);//jpgraph的绘制操作
$g->SetScale("textint");
$g->title->Set('data');

//文件的处理
$file = fopen('data.txt','r');
$labels = array();
while(!feof($file)){
 $data = explode(' ',fgets($file));
 $data[1] = str_replace(',','.',$data[1]);//数据处理,将数据中的逗号修正为小数点
 $labels[(int)$data[0]] = (float)$data[1];//这里将数据以键值的方式存入数组,方便我们根据键来排序
} 

ksort($labels);//按键的大小排序

$x = array();//x轴的表示数据
$y = array();//y轴的表示数据
foreach($labels as $key=>$value){
 array_push($x,$key);
 array_push($y,$value);
}

$linePlot = new LinePlot($y);
$g->xaxis->SetTickLabels($x);
$linePlot->SetLegend('data');
$g->Add($linePlot);
$g->Stroke();

在有了这个原图做对比,我们接下来进行学习。我们采用php-ml中的LeastSquars来进行学习。我们测试的输出需要存入文件,方便我们可以画一个对比图。学习代码如下:

<?php
 require 'vendor/autoload.php';

 use Phpml\Regression\LeastSquares;
 use Phpml\ModelManager;

 $file = fopen('data.txt','r');
 $samples = array();
 $labels = array();
 $i = 0;
 while(!feof($file)){
  $data = explode(' ',fgets($file));
  $samples[$i][0] = (int)$data[0];
  $data[1] = str_replace(',','.',$data[1]);
  $labels[$i] = (float)$data[1];
  $i ++;
 }
 fclose($file);

 $regression = new LeastSquares();
 $regression->train($samples,$labels);

 //这个a数组是根据我们对原数据处理后的x值给出的,做测试用。
 $a = [0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25,26,27,29,30,31,37,40,41,45,48,53,55,57,60,61,108,124];
 for($i = 0; $i < count($a); $i ++){
  file_put_contents("putput.txt",($regression->predict([$a[$i]]))."\n",FILE_APPEND); //以追加的方式存入文件
 }

之后,我们将存入文件的数据读出来,绘制一个图形,先贴最后的效果图:

代码如下:

<?php
include_once './src/jpgraph.php';
include_once './src/jpgraph_line.php';

$g = new Graph(1920,1080);
$g->SetScale("textint");
$g->title->Set('data');

$file = fopen('putput.txt','r');
$y = array();
$i = 0;
while(!feof($file)){
 $y[$i] = (float)(fgets($file));
 $i ++;
} 

$x = [0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25,26,27,29,30,31,37,40,41,45,48,53,55,57,60,61,108,124];

$linePlot = new LinePlot($y);
$g->xaxis->SetTickLabels($x);
$linePlot->SetLegend('data');
$g->Add($linePlot);
$g->Stroke();

可以发现,图形出入还是比较大的,尤其是在图形锯齿比较多的部分。不过,这毕竟是40组数据,我们可以看出,大概的图形趋势是吻合的。一般的库在做这种学习时,数据量低的情况下,准确度都非常低。要达到比较高的精度,需要大量的数据,万条以上的数据量是必要的。如果达不到这个数据要求,那我们使用任何库都是徒劳的。所以,机器学习的实践中,真正难的不在精度低、配置复杂等技术问题,而是数据量不够,或者质量太低(一组数据中无用的数据太多)。在做机器学习之前,对数据的预先处理也是必要的。

接下来,我们来对花蕊数据进行测试。一共三种分类,由于我们下载到的是csv数据,所以我们可以使用php-ml官方提供的操作csv文件的方法。而这里是一个分类问题,所以我们选择库提供的SVC算法来进行分类。我们把花蕊数据的文件名定为Iris.csv,代码如下:

<?php
require 'vendor/autoload.php';

use Phpml\Classification\SVC;
use Phpml\SupportVectorMachine\Kernel;
use Phpml\Dataset\CsvDataset;

$dataset = new CsvDataset('Iris.csv' , 4, false);
$classifier = new SVC(Kernel::LINEAR,$cost = 1000);
$classifier->train($dataset->getSamples(),$dataset->getTargets());

echo $classifier->predict([$argv[1],$argv[2],$argv[3],$argv[4]]);//$argv是命令行参数,调试这种程序使用命令行较方便

是不是很简单?短短12行代码就搞定了。接下来,我们来测试一下。根据我们上面贴出的图,当我们输入5 3.3 1.4 0.2的时候,输出应该是Iris-setosa。我们看一下:

看,至少我们输入一个原来就有的数据,得到了正确的结果。但是,我们输入原数据集中没有的数据呢?我们来测试两组:

由我们之前贴出的两张图的数据看,我们输入的数据在数据集中并不存在,但分类按照我们初步的观察来看,是合理的。

所以,这个机器学习库对于大多数的人来说,都是够用的。而大多数鄙视这个库鄙视那个库,大谈性能的人,基本上也不是什么大牛。真正的大牛已经忙着捞钱去了,或者正在做学术研究等等。我们更多的应该是掌握算法,了解其中的道理和玄机,而不是夸夸其谈。当然,这个库并不建议用在大型项目上,只推荐小型项目或者个人项目等。

jpgraph只依赖GD库,所以下载引用之后就可以使用,大量的代码都放在了绘制图形和初期的数据处理上。由于库的出色封装,学习代码并不复杂。需要所有代码或者测试数据集的小伙伴可以留言或者私信等,我提供完整的代码,解压即用

以上这篇PHP机器学习库php-ml的简单测试和使用方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • PHP机器学习库php-ml的简单测试和使用方法

    php-ml是一个使用PHP编写的机器学习库.虽然我们知道,python或者是C++提供了更多机器学习的库,但实际上,他们大多都略显复杂,配置起来让很多新手感到绝望. php-ml这个机器学习库虽然没有特别高大上的算法,但其具有最基本的机器学习.分类等算法,我们的小公司做一些简单的数据分析.预测等等都是够用的.我们的项目中,追求的应该是性价比,而不是过分的效率和精度.一些算法和库看上去非常厉害,但如果我们考虑快速上线,而我们的技术人员没有机器学习方面的经验,那么复杂的代码和配置反而会拖累我们的项

  • Python 机器学习库 NumPy入门教程

    NumPy是一个Python语言的软件包,它非常适合于科学计算.在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础库. 本文是对它的一个入门教程. 介绍 NumPy是一个用于科技计算的基础软件包,它是Python语言实现的.它包含了: 强大的N维数组结构 精密复杂的函数 可集成到C/C++和Fortran代码的工具 线性代数,傅里叶变换以及随机数能力 除了科学计算的用途以外,NumPy也可被用作高效的通用数据的多维容器.由于它适用于任意类型的数据,这使得NumPy可以无缝和

  • python机器学习库scikit-learn:SVR的基本应用

    scikit-learn是python的第三方机器学习库,里面集成了大量机器学习的常用方法.例如:贝叶斯,svm,knn等. scikit-learn的官网 : http://scikit-learn.org/stable/index.html点击打开链接 SVR是支持向量回归(support vector regression)的英文缩写,是支持向量机(SVM)的重要的应用分支. scikit-learn中提供了基于libsvm的SVR解决方案. PS:libsvm是台湾大学林智仁教授等开发设

  • Python基于sklearn库的分类算法简单应用示例

    本文实例讲述了Python基于sklearn库的分类算法简单应用.分享给大家供大家参考,具体如下: scikit-learn已经包含在Anaconda中.也可以在官方下载源码包进行安装.本文代码里封装了如下机器学习算法,我们修改数据加载函数,即可一键测试: # coding=gbk ''' Created on 2016年6月4日 @author: bryan ''' import time from sklearn import metrics import pickle as pickle

  • Python机器学习库scikit-learn安装与基本使用教程

    本文实例讲述了Python机器学习库scikit-learn安装与基本使用.分享给大家供大家参考,具体如下: 引言 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上能够为用户提供各种机器学习算法接口,可以让用户简单.高效地进行数据挖掘和数据分析. scikit-learn安装 python 中安装许多模板库之前都有依赖关系,安装 scikit-learn 之前需要以下先决条件: Python(>= 2.6 or >= 3

  • Python机器学习库scikit-learn入门开发示例

    目录 1.数据采集和标记 2.特征选择 3.数据清洗 4.模型选择 5.模型训练 6.模型测试 7.模型保存与加载 8.实例 数据采集和标记 特征选择 模型训练 模型测试 模型保存与加载 1.数据采集和标记 先采集数据,再对数据进行标记.其中采集数据要就有代表性,以确保最终训练出来模型的准确性. 2.特征选择 选择特征的直观方法:直接使用图片的每个像素点作为一个特征. 数据保存为样本个数×特征个数格式的array对象.scikit-learn使用Numpy的array对象来表示数据,所有的图片数

  • AJAX简单测试代码实例

    本文实例讲述了AJAX简单测试代码.分享给大家供大家参考.具体如下: 客户端:代码如下:(AJAX_test.html ) <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/x

  • C++标准库bitset类型的简单使用方法介绍

    std::bitset是STL的一部分,准确地说,std::bitset是一个模板类,它的模板参数不是类型,而整形的数值(这一特性是ISO C++2003的新特性),有了它我们可以像使用数组一样使用位. #include<bister> using std::bitset; 一句话定义:可自定义位数,用作记录二进制的数据类型. 一,定义和初始化 bitset<n> b;                           //b有n位,每位都为0; bitset<n>

  • Python中DJANGO简单测试实例

    本文实例讲述了Python中DJANGO简单测试的用法.分享给大家供大家参考.具体如下: 这里以facebook台湾的测试版为例. 仅仅测试用户登录,主要说明测试的使用和django环境的设置. 代码如下: import os import sys import unittest import hashlib TEST_MEMBER_ID = 11 SNS_ID = 100002309745702 TEST_SESSION_KEY = '125737724171219|2.AQCp7ctCYXJ

  • PHP简单开启curl的方法(测试可行) 原创

    本文讲述了PHP简单开启curl的方法.分享给大家供大家参考,具体如下: 一.问题: windows主机出现"Call to undefined function curl_init"错误提示,没有定义的函数,也就是php还没打开对curl_init函数的支持. 二.解决方法: 需要开启php的curl函数库.具体步骤如下: ① 打开php.ini(通常在C:\Windows\目录下,WampServer一般在类似C:\wamp\bin\php\php5.3.8\的目录下),找到 复制

随机推荐