numpy.random.seed()的使用实例解析
这个函数的使用方法,已经有前辈讲解过了,只是自己在测试的时候有一些思考,所以便写了这篇博客。下面是前辈文章的原话:
seed( ) 用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed( )值,则每次生成的随即数都相同,如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。
编写如下第一份代码:
from numpy import * num=0 while(num<5): random.seed(5) print(random.random()) num+=1
运行结果为:
0.22199317108973948
0.22199317108973948
0.22199317108973948
0.22199317108973948
0.22199317108973948
可以看到,每次运行的结果都是一样的
修改代码,如下为第二份代码:
from numpy import * num=0 random.seed(5) while(num<5): print(random.random()) num+=1
运行结果为:
0.22199317108973948
0.8707323061773764
0.20671915533942642
0.9186109079379216
0.48841118879482914
可以看到,和上一份代码的运行结果不同。这里每次的输出结果都是不一样的。这也就提醒了我们在以后编写代码的时候要明白一点:random.seed(something)只能是一次有效。其实仔细想想也很自然,如果不是一次有效,比如说是一直有效,那岂不是会影响到后续的代码中随机数的选取?
这次测试的代码比较可以说是很简单的,但是却暴露了我的一个思维上的漏洞:在这次测试中我虽然明白了:
seed( ) 用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed( )值,则每次生成的随即数都相同,如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。
这段话的意思,但是我却先入为主地认为第二份代码的结果应和第一份代码中的一致。而通过反面思考,假设这个函数使用一次后便是一直有效的,那么每次生成的随即数都会相同,但是这样岂不是会影响到后续的代码中随机数的选取?
所以,以后学新的东西的时候,都要问自己傻问题,不断地去测试自己的想法以达到更深的理解。
故对于该函数的使用,可总结为:
seed( ) 用于指定随机数生成时所用算法开始的整数值。
1.如果使用相同的seed( )值,则每次生成的随即数都相同;
2.如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。
3.设置的seed()值仅一次有效
总结
以上就是本文关于numpy.random.seed()的使用实例解析的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
您可能感兴趣的文章:
- Python numpy实现数组合并实例(vstack,hstack)
- Python+matplotlib+numpy实现在不同平面的二维条形图
- Python+matplotlib+numpy绘制精美的条形统计图
- python的numpy模块安装不成功简单解决方法总结
- windows 下python+numpy安装实用教程
- Python numpy 常用函数总结
- Python编程给numpy矩阵添加一列方法示例
- Python numpy生成矩阵、串联矩阵代码分享
相关推荐
-
Python+matplotlib+numpy实现在不同平面的二维条形图
在不同平面上绘制二维条形图. 本实例制作了一个3d图,其中有二维条形图投射到平面y=0,y=1,等. 演示结果: 完整代码: from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np # Fixing random state for reproducibility np.random.seed(19680801) fig = plt.figure() ax = fig.a
-
windows 下python+numpy安装实用教程
如题,今天兜兜转转找了很多网站帖子,一个个环节击破,最后装好费了不少时间. 希望这个帖子能帮助有需要的人,教你一篇帖子搞定python+numpy,节约科研时间. 水平有限,难免存在不足,敬请指正. *******************python安装**************************************************** step1:官网下载安装包: https://www.python.org/ 我下载的是python-3.4.4.msi step2:pyt
-
Python numpy 常用函数总结
Numpy是什么 在没给大家介绍numpy之前先给大家说下python的基本概念. Python 是一种高级的,动态的,多泛型的编程语言.Python代码很多时候看起来就像是伪代码一样,因此你可以使用很少的几行可读性很高的代码来实现一个非常强大的想法. numpy很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数. 数组 数组常用函数 1.w
-
Python+matplotlib+numpy绘制精美的条形统计图
本文实例主要向大家分享了一个Python+matplotlib+numpy绘制精美的条形统计图的代码,效果展示如下: 完整代码如下: import matplotlib.pyplot as plt from numpy import arange from numpy.random import rand def gbar(ax, x, y, width=0.5, bottom=0): X = [[.6, .6], [.7, .7]] for left, top in zip(x, y): ri
-
Python编程给numpy矩阵添加一列方法示例
首先我们有一个数据是一个mn的numpy矩阵现在我们希望能够进行给他加上一列变成一个m(n+1)的矩阵 import numpy as np a = np.array([[1,2,3],[4,5,6],[7,8,9]]) b = np.ones(3) c = np.array([[1,2,3,1],[4,5,6,1],[7,8,9,1]]) PRint(a) print(b) print(c) [[1 2 3] [4 5 6] [7 8 9]] [ 1. 1. 1.] [[1 2 3 1] [4
-
Python numpy实现数组合并实例(vstack,hstack)
若干个数组可以沿不同的轴合合并到一起,vstack,hstack的简单用法, >>> a = np.floor(10*np.random.random((2,2))) >>> a array([[ 8., 8.], [ 0., 0.]]) >>> b = np.floor(10*np.random.random((2,2))) >>> b array([[ 1., 8.], [ 0., 4.]]) >>> np.vs
-
Python numpy生成矩阵、串联矩阵代码分享
import numpy 生成numpy矩阵的几个相关函数: numpy.array() numpy.zeros() numpy.ones() numpy.eye() 串联生成numpy矩阵的几个相关函数: numpy.array() numpy.row_stack() numpy.column_stack() numpy.reshape() >>> import numpy >>> numpy.eye(3) array([[ 1., 0., 0.], [ 0., 1.
-
python的numpy模块安装不成功简单解决方法总结
为了画个图,被numpy这个模块的安装真的折腾疯了!!!一直装不上,花了几个小时,看了网上的很多教程.方法发现总结得不是很全,这里总结一下,防止大家再出现这个问题没有解决方法. Python的魅力之一,就是拥有众多功能强大的插件,但是这些插件的寻找.安装.升级在windows系统上却非常之麻烦.首先安装完Python后需要在系统配置环境变量,接下来又要安装Setuptools,而且安装过程中还会报编码错误,对于需要拷贝源码安装的还需要去CMD里打命令,还得小心翼翼避免打错参数,如果没有一位有经验
-
numpy.random.seed()的使用实例解析
这个函数的使用方法,已经有前辈讲解过了,只是自己在测试的时候有一些思考,所以便写了这篇博客.下面是前辈文章的原话: seed( ) 用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed( )值,则每次生成的随即数都相同,如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同. 编写如下第一份代码: from numpy import * num=0 while(num<5): random.seed(5) print(random.random())
-
Python numpy中np.random.seed()的详细用法实例
目录 引言 E.G.实验 E.G.随机数种子参数的作用 补充:一个随机种子在代码中只作用一次,只作用于其定义位置的下一次随机数生成 总结 引言 在进行机器学习和深度学习中,我们会经常用到np.random.seed(),利用随机数种子,使得每次生成的随机数相同. numpy.randn.randn(d0,d1,...,dn) randn函数根据给定维度生成大概率在(-2.58~+2.58)之间的数据 randn函数返回一个或者一组样本,具有标准正态分布 dn表示每个维度 返回值为指定维度的arr
-
Python中的np.random.seed()随机数种子问题及解决方法
目录 1. 何为随机数种子 2. np.random.seed()参数问题 3. 使用方法 4. 随机数种子问题总结 前言: 最近在学习过程中总是遇到np.random.seed()这个问题,刚开始总是觉得不过是一个简单的随机数种子,就没太在意,后来遇到的次数多了,才发现他竟然是如此之用处之大!接下来我就把我所学到的关于np.random.seed()的知识分享给大家! 1. 何为随机数种子 随机数种子,相当于我给接下来需要生成的随机数一个初值,按照我给的这个初值,按固定顺序生成随机数.读到这,
-
numpy.random模块用法总结
random模块用于生成随机数,下面看看模块中一些常用函数的用法: from numpy import random numpy.random.uniform(low=0.0, high=1.0, size=None) 生出size个符合均分布的浮点数,取值范围为[low, high),默认取值范围为[0, 1.0) >>> random.uniform() 0.3999807403689315 >>> random.uniform(size=1) array([0.5
-
Python numpy线性代数用法实例解析
这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 numpy中线性代数用法 矩阵乘法 >>> import numpy as np >>> x=np.array([[1,2,3],[4,5,6]]) >>> y=np.array([[7,8],[-1,7],[8,9]]) >>> x array([[1, 2, 3], [4
-
Python中的random.uniform()函数教程与实例解析
random.uniform( ) 函数教程与实例解析 1. uniform( ) 函数说明 random.uniform(x, y)方法将随机生成一个实数,它在 [x,y] 范围内. 2. uniform( ) 的语法与参数 2.1 语法 # _*_ coding: utf-8 _*_ import random random.uniform(x, y) 或 # _*_ coding: utf-8 _*_ from random import uniform uniform(x, y) 提示:
-
Python Numpy数组扩展repeat和tile使用实例解析
这篇文章主要介绍了Python Numpy数组扩展repeat和tile使用实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 numpy.repeat 官方文档 numpy.repeat(a, repeats, axis=None) Repeat elements of an array. 可以看出repeat函数是操作数组中的每一个元素,进行元素的复制. 例如: >>> a = np.arange(3) >>>
-
python numpy数组复制使用实例解析
这篇文章主要介绍了python numpy数组复制使用实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在使用python时我们经常会处理数组,有的时候是复制有的时候不是,这里也是初学者最容易误解的地方,简单讲,可以分为下面三种情况: 不是复制的情况(No Copy at All) import numpy as np a = np.arange(12) #a为一个序列 b = a #没有创建新的对象 print('a的shape为:',
-
在Keras中利用np.random.shuffle()打乱数据集实例
我就废话不多说了,大家还是直接看代码吧~ from numpy as np index=np.arange(2000) np.random.shuffle(index) print(index[0:20]) X_train=X_train[index,:,:,:]#X_train是训练集,y_train是训练标签 y_train=y_train[index] 补充知识:Keras中shuffle和validation_split的顺序 模型的fit函数有两个参数,shuffle用于将数据打乱,v
-
Python随机数种子(random seed)的使用
目录 1. 随机数种子 2. numpy中的随机数种子 3. 随机数"顺序"的奥秘 在科学技术和机器学习等其他算法相关任务中,我们经常需要用到随机数,为了把握随机数的生成特性,从随机数的随机无序中获得确定和秩序.我们可以利用随机数种子(random seed)来实现这一目标,随机数种子,可以使得引入了随机数的整个程序,在多次运行中得到确定的,一致的结果. 很多博文谈到随机数种子,只是简单论及,利用随机数种子,可以每次生成相同的随机数.想真正用好掌握它,对此很容易产生疑惑,生成相同的随机
随机推荐
- iOS中利用CAGradientLayer绘制渐变色的方法实例
- 使用Angular.js实现简单的购物车功能
- javascript ImgBox透明遮罩层背景图片展示
- Oracle 11g控制文件全部丢失从零开始重建控制文件
- java实现将汉语转换为拼音功能
- IIS APPPOOL\DefaultAppPool 登录失败的解决方法
- 微信小程序开发之入门实例教程篇
- php文件包含目录配置open_basedir的使用与性能详解
- 解析android中ProgressBar的用法
- 很全面的MySQL处理重复数据代码
- 做了CDN加速的ASP网站获取用户真实IP程序
- VBS教程:函数-WeekDayName 函数
- 微信小程序(三):网络请求
- Mongodb常见错误与解决方法小结(Mongodb中经常出现的错误)
- JavaScript实现获取用户单击body中所有A标签内容的方法
- jQuery插件FusionCharts实现的2D柱状图效果示例【附demo源码下载】
- javascript权威指南 学习笔记之变量作用域分享
- 新浪中用来显示flash的函数
- windows服务器下IIS6/7下PHP 无法加载 php_curl.dll 等动态链接库
- Linux下虚拟域名的实现(1)