TensorFlow实现Softmax回归模型

一、概述及完整代码

对MNIST(MixedNational Institute of Standard and Technology database)这个非常简单的机器视觉数据集,Tensorflow为我们进行了方便的封装,可以直接加载MNIST数据成我们期望的格式.本程序使用Softmax Regression训练手写数字识别的分类模型.

先看完整代码:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data 

mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
print(mnist.train.images.shape, mnist.train.labels.shape)
print(mnist.test.images.shape, mnist.test.labels.shape)
print(mnist.validation.images.shape, mnist.validation.labels.shape) 

#构建计算图
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) 

#在会话sess中启动图
sess = tf.InteractiveSession() #创建InteractiveSession对象
tf.global_variables_initializer().run() #全局参数初始化器
for i in range(1000):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 train_step.run({x: batch_xs, y_: batch_ys}) 

#测试验证阶段
#沿着第1条轴方向取y和y_的最大值的索引并判断是否相等
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
#转换bool型tensor为float32型tensor并求平均即得到正确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}))

二、详细解读

首先看一下使用TensorFlow进行算法设计训练的核心步骤

1.定义算法公式,也就是神经网络forward时的计算;

2.定义loss,选定优化器,并制定优化器优化loss;

3.在训练集上迭代训练算法模型;

4.在测试集或验证集上对训练得到的模型进行准确率评测.

首先创建一个Placeholder,即输入张量数据的地方,第一个参数是数据类型dtype,第二个参数是tensor的形状shape.接下来创建SoftmaxRegression模型中的weights(W)和biases(b)的Variable对象,不同于存储数据的tensor一旦使用掉就会消失,Variable在模型训练迭代中是持久存在的,并且在每轮迭代中被更新Variable初始化可以是常量或随机值.接下来实现模型算法y = softmax(Wx + b),TensorFlow语言只需要一行代码,tf.nn包含了大量神经网络的组件,头tf.matmul是矩阵乘法函数.TensorFlow将模型中的forward和backward的内容都自动实现,只要定义好loss,训练的时候会自动求导并进行梯度下降,完成对模型参数的自动学习.定义损失函数lossfunction来描述分类精度,对于多分类问题通常使用cross-entropy交叉熵.先定义一个placeholder输入真实的label,tf.reduce_sum和tf.reduce_mean的功能分别是求和和求平均.构造完损失函数cross-entropy后,再定义一个优化算法即可开始训练.我们采用随机梯度下降SGD,定义好后TensorFlow会自动添加许多运算操作来实现反向传播和梯度下降,而给我们提供的是一个封装好的优化器,只需要每轮迭代时feed数据给它就好.设置好学习率.

构造阶段完成后, 才能启动图. 启动图的第一步是创建一个 Session 对象或InteractiveSession对象, 如果无任何创建参数, 会话构造器将启动默认图.创建InteractiveSession对象会这个Session注册为默认的Session,之后的运算也默认跑在这个Session里面,不同Session之间的数据和运算应该是相互独立的.下一步使用TensorFlow的全局参数初始化器tf.global_variables_initializer病直接执行它的run方法(这个全局参数初始化器应该是1.0.0版本中的新特性,在之前0.10.0版本测试不通过).

至此,以上定义的所有公式其实只是Computation Graph,代码执行到这时,计算还没有实际发生,只有等调用run方法并feed数据时计算才真正执行.

随后一步,就可以开始迭代地执行训练操作train_step.这里每次都从训练集中随机抽取100条样本构成一个mini-batch,并feed给placeholder.

完成迭代训练后,就可以对模型的准确率进行验证.比较y和y_在各个测试样本中最大值所在的索引,然后转换为float32型tensor后求平均即可得到正确率.多次测试后得到在测试集上的正确率为92%左右.还是比较理想的结果.

三、其他补充

1.Sesssion类和InteractiveSession

对于product =tf.matmul(matrix1, matrix2),调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'product' 作为该方法的参数.上面提到, 'product' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回矩阵乘法 op 的输出.整个执行过程是自动化的, 会话负责传递op 所需的全部输入. op 通常是并发执行的.函数调用 'run(product)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op)的执行.返回值 'result' 是一个 numpy的`ndarray`对象.

Session 对象在使用完后需要关闭以释放资源sess.close(). 除了显式调用 close 外, 也可以使用"with" 代码块 来自动完成关闭动作.

with tf.Session() as sess:
 result = sess.run([product])
 print result

为了便于使用诸如 IPython 之类的 Python 交互环境, 可以使用InteractiveSession代替 Session 类, 使用 Tensor.eval()和 Operation.run()方法代替 Session.run(). 这样可以避免使用一个变量来持有会话.

# 进入一个交互式 TensorFlow 会话.
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])
# 使用初始化器 initializer op 的 run() 方法初始化 'x'
x.initializer.run()
# 增加一个减法 sub op, 从 'x' 减去 'a'. 运行减法 op, 输出结果
sub = tf.sub(x, a)
print sub.eval()
# ==> [-2. -1.]

2.tf.reduce_sum

首先,tf.reduce_X一系列运算操作(operation)是实现对一个tensor各种减少维度的数学计算.

tf.reduce_sum(input_tensor, reduction_indices=None,keep_dims=False, name=None)

运算功能:沿着给定维度reduction_indices的方向降低input_tensor的维度,除非keep_dims=True,tensor的秩在reduction_indices上减1,被降低的维度的长度为1.如果reduction_indices没有传入参数,所有维度都降低,返回只含有1个元素的tensor.运算最终返回降维后的tensor.

演示代码:

# 'x' is [[1, 1, 1]
#   [1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
tf.reduce_sum(x, [0, 1]) ==> 6

3.tf.reduce_mean

tf.reduce_mean(input_tensor, reduction_indices=None,keep_dims=False, name=None)

运算功能:将input_tensor沿着给定维度reduction_indices减少维度,除非keep_dims=True,tensor的秩在reduction_indices上减1,被降低的维度的长度为1.如果reduction_indices没有传入参数,所有维度都降低,返回只含有1个元素的tensor.运算最终返回降维后的tensor.

演示代码:

# 'x' is [[1., 1. ]
#   [2., 2.]]
tf.reduce_mean(x) ==> 1.5
tf.reduce_mean(x, 0) ==> [1.5, 1.5]
tf.reduce_mean(x, 1) ==> [1., 2.] 

4.tf.argmax

tf.argmax(input, dimension, name=None)

运算功能:返回input在指定维度下的最大值的索引.返回类型为int64.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • 用tensorflow构建线性回归模型的示例代码
  • Python下的Softmax回归函数的实现方法(推荐)
(0)

相关推荐

  • 用tensorflow构建线性回归模型的示例代码

    用tensorflow构建简单的线性回归模型是tensorflow的一个基础样例,但是原有的样例存在一些问题,我在实际调试的过程中做了一点自己的改进,并且有一些体会. 首先总结一下tf构建模型的总体套路 1.先定义模型的整体图结构,未知的部分,比如输入就用placeholder来代替. 2.再定义最后与目标的误差函数. 3.最后选择优化方法. 另外几个值得注意的地方是: 1.tensorflow构建模型第一步是先用代码搭建图模型,此时图模型是静止的,是不产生任何运算结果的,必须使用Session

  • Python下的Softmax回归函数的实现方法(推荐)

    Softmax回归函数是用于将分类结果归一化.但它不同于一般的按照比例归一化的方法,它通过对数变换来进行归一化,这样实现了较大的值在归一化过程中收益更多的情况. Softmax公式 Softmax实现方法1 import numpy as np def softmax(x): """Compute softmax values for each sets of scores in x.""" pass # TODO: Compute and re

  • TensorFlow实现Softmax回归模型

    一.概述及完整代码 对MNIST(MixedNational Institute of Standard and Technology database)这个非常简单的机器视觉数据集,Tensorflow为我们进行了方便的封装,可以直接加载MNIST数据成我们期望的格式.本程序使用Softmax Regression训练手写数字识别的分类模型. 先看完整代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist imp

  • tensorflow实现逻辑回归模型

    逻辑回归模型 逻辑回归是应用非常广泛的一个分类机器学习算法,它将数据拟合到一个logit函数(或者叫做logistic函数)中,从而能够完成对事件发生的概率进行预测. import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data #下载好的mnist数据集存在F:/mnist/data/中 m

  • 用TensorFlow实现lasso回归和岭回归算法的示例

    也有些正则方法可以限制回归算法输出结果中系数的影响,其中最常用的两种正则方法是lasso回归和岭回归. lasso回归和岭回归算法跟常规线性回归算法极其相似,有一点不同的是,在公式中增加正则项来限制斜率(或者净斜率).这样做的主要原因是限制特征对因变量的影响,通过增加一个依赖斜率A的损失函数实现. 对于lasso回归算法,在损失函数上增加一项:斜率A的某个给定倍数.我们使用TensorFlow的逻辑操作,但没有这些操作相关的梯度,而是使用阶跃函数的连续估计,也称作连续阶跃函数,其会在截止点跳跃扩

  • 详解用TensorFlow实现逻辑回归算法

    本文将实现逻辑回归算法,预测低出生体重的概率. # Logistic Regression # 逻辑回归 #---------------------------------- # # This function shows how to use TensorFlow to # solve logistic regression. # y = sigmoid(Ax + b) # # We will use the low birth weight data, specifically: # y

  • TensorFlow教程Softmax逻辑回归识别手写数字MNIST数据集

    基于MNIST数据集的逻辑回归模型做十分类任务 没有隐含层的Softmax Regression只能直接从图像的像素点推断是哪个数字,而没有特征抽象的过程.多层神经网络依靠隐含层,则可以组合出高阶特征,比如横线.竖线.圆圈等,之后可以将这些高阶特征或者说组件再组合成数字,就能实现精准的匹配和分类. import tensorflow as tf import numpy as np import input_data print('Download and Extract MNIST datas

  • Python利用逻辑回归模型解决MNIST手写数字识别问题详解

    本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题.分享给大家供大家参考,具体如下: 1.MNIST手写识别问题 MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几.可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件. %matplotlib inline import tensorflow as tf import tensorflow.examples.tutori

  • TensorFlow实现Logistic回归

    本文实例为大家分享了TensorFlow实现Logistic回归的具体代码,供大家参考,具体内容如下 1.导入模块 import numpy as np import pandas as pd from pandas import Series,DataFrame from matplotlib import pyplot as plt %matplotlib inline #导入tensorflow import tensorflow as tf #导入MNIST(手写数字数据集) from

  • 如何将tensorflow训练好的模型移植到Android (MNIST手写数字识别)

    [尊重原创,转载请注明出处]https://blog.csdn.net/guyuealian/article/details/79672257 项目Github下载地址:https://github.com/PanJinquan/Mnist-tensorFlow-AndroidDemo 本博客将以最简单的方式,利用TensorFlow实现了MNIST手写数字识别,并将Python TensoFlow训练好的模型移植到Android手机上运行.网上也有很多移植教程,大部分是在Ubuntu(Linu

  • pytorch机器学习softmax回归的简洁实现

    目录 初始化模型参数 重新审视softmax的实现 优化算法 通过深度学习框架的高级API也能更方便地实现分类模型.让我们继续使用Fashion-MNIST数据集,并保持批量大小为256. import torch from torch import nn from d2l import torch as d2l batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) 初始化模型参数 由于s

  • python深度学习tensorflow训练好的模型进行图像分类

    目录 正文 随机找一张图片 读取图片进行分类识别 最后输出 正文 谷歌在大型图像数据库ImageNet上训练好了一个Inception-v3模型,这个模型我们可以直接用来进来图像分类. 下载链接: https://pan.baidu.com/s/1XGfwYer5pIEDkpM3nM6o2A 提取码: hu66 下载完解压后,得到几个文件: 其中 classify_image_graph_def.pb 文件就是训练好的Inception-v3模型. imagenet_synset_to_huma

随机推荐