pandas的连接函数concat()函数的具体使用方法

concat()函数的具体用法

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
     keys=None, levels=None, names=None, verify_integrity=False,
     copy=True)

参数含义

  • objs:Series,DataFrame或Panel对象的序列或映射。如果传递了dict,则排序的键将用作键参数,除非它被传递,在这种情况下,将选择值(见下文)。任何无对象将被静默删除,除非它们都是无,在这种情况下将引发一个ValueError。
  • axis:{0,1,...},默认为0。沿着连接的轴。
  • join:{'inner','outer'},默认为“outer”。如何处理其他轴上的索引。outer为联合和inner为交集。
  • ignore_index:boolean,default False。如果为True,请不要使用并置轴上的索引值。结果轴将被标记为0,...,n-1。如果要连接其中并置轴没有有意义的索引信息的对象,这将非常有用。注意,其他轴上的索引值在连接中仍然受到尊重。
  • join_axes:Index对象列表。用于其他n-1轴的特定索引,而不是执行内部/外部设置逻辑。
  • keys:序列,默认值无。使用传递的键作为最外层构建层次索引。如果为多索引,应该使用元组。
  • levels:序列列表,默认值无。用于构建MultiIndex的特定级别(唯一值)。否则,它们将从键推断。
  • names:list,default无。结果层次索引中的级别的名称。
  • verify_integrity:boolean,default False。检查新连接的轴是否包含重复项。这相对于实际的数据串联可能是非常昂贵的。
  • copy:boolean,default True。如果为False,请勿不必要地复制数据。
In [1]: df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
  ...:           'B': ['B0', 'B1', 'B2', 'B3'],
  ...:           'C': ['C0', 'C1', 'C2', 'C3'],
  ...:           'D': ['D0', 'D1', 'D2', 'D3']},
  ...:           index=[0, 1, 2, 3])
  ...: 

In [2]: df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
  ...:           'B': ['B4', 'B5', 'B6', 'B7'],
  ...:           'C': ['C4', 'C5', 'C6', 'C7'],
  ...:           'D': ['D4', 'D5', 'D6', 'D7']},
  ...:           index=[4, 5, 6, 7])
  ...: 

In [3]: df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
  ...:           'B': ['B8', 'B9', 'B10', 'B11'],
  ...:           'C': ['C8', 'C9', 'C10', 'C11'],
  ...:           'D': ['D8', 'D9', 'D10', 'D11']},
  ...:           index=[8, 9, 10, 11])
  ...: 

In [4]: frames = [df1, df2, df3]

In [5]: result = pd.concat(frames)

KEY参数

result = pd.concat(frames, keys=['x', 'y', 'z'])

JOIN参数

默认join = 'outer',为取并集的关系

In [8]: df4 = pd.DataFrame({'B': ['B2', 'B3', 'B6', 'B7'],
  ...:         'D': ['D2', 'D3', 'D6', 'D7'],
  ...:         'F': ['F2', 'F3', 'F6', 'F7']},
  ...:         index=[2, 3, 6, 7])
  ...: 

In [9]: result = pd.concat([df1, df4], axis=1)

结果:

当设置join = 'inner',则说明为取交集

In [10]: result = pd.concat([df1, df4], axis=1, join='inner')

结果:

如果索引想从原始DataFrame重用确切索引:

In [11]: result = pd.concat([df1, df4], axis=1, join_axes=[df1.index]) #设置索引为df1的索引

pandas文档:http://pandas.pydata.org/pandas-docs/stable/

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例

    最近在工作中,遇到了数据合并.连接的问题,故整理如下,供需要者参考~ 一.concat:沿着一条轴,将多个对象堆叠到一起 concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接.与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果. concat(objs, axis=0, join='outer', join_axes=None, ignore_ind

  • 详解pandas数据合并与重塑(pd.concat篇)

    1 concat concat函数是在pandas底下的方法,可以将数据根据不同的轴作简单的融合 pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False) 参数说明 objs: series,dataframe或者是panel构成的序列lsit axis: 需要合并链接的轴,0是行,1是列

  • Pandas 合并多个Dataframe(merge,concat)的方法

    在数据处理的时候,尤其在搞大数据竞赛的时候经常会遇到一个问题就是,多个表单的合并问题,比如一个表单有user_id和age这两个字段,另一个表单有user_id和sex这两个字段,要把这两个表合并成只有user_id.age.sex三个字段的表怎么办的,普通的拼接是做不到的,因为user_id每一行之间不是对应的,像拼积木似的横向拼接肯定是不行的. pandas中有个merge函数可以做到这个实用的功能,merge这个词会点SQL语言的应该都不陌生. 下面说说merge函数怎么用: df = p

  • pandas dataframe的合并实现(append, merge, concat)

    创建2个DataFrame: >>> df1 = pd.DataFrame(np.ones((4, 4))*1, columns=list('DCBA'), index=list('4321')) >>> df2 = pd.DataFrame(np.ones((4, 4))*2, columns=list('FEDC'), index=list('6543')) >>> df3 = pd.DataFrame(np.ones((4, 4))*3, col

  • Pandas数据连接pd.concat的实现

    目录 1.按行连接 2.按列连接 3.合并交集 扩展 4.与序列合并 5.指定索引 Pandas数据可以实现纵向和横向连接,将数据连接后会形成一个新对象(Series或DataFrame) 连接是最常用的多个数据合并操作 pd.concat()是专门用于数据连接合并的函数,它可以沿着行或列进行操作,同时可以指定非合并轴的合并方式(如合集.交集等) pd.concat()会返回一个合并后的DataFrame 语法 pd.concat(objs, axis=0, join='outer', igno

  • pandas的连接函数concat()函数的具体使用方法

    concat()函数的具体用法 pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True) 参数含义 objs:Series,DataFrame或Panel对象的序列或映射.如果传递了dict,则排序的键将用作键参数,除非它被传递,在这种情况下,将选择值(见下文).任何

  • 详解MySQL中concat函数的用法(连接字符串)

    MySQL中concat函数 使用方法: CONCAT(str1,str2,-) 返回结果为连接参数产生的字符串.如有任何一个参数为NULL ,则返回值为 NULL. 注意: 如果所有参数均为非二进制字符串,则结果为非二进制字符串. 如果自变量中含有任一二进制字符串,则结果为一个二进制字符串. 一个数字参数被转化为与之相等的二进制字符串格式:若要避免这种情况,可使用显式类型 cast, 例如: SELECT CONCAT(CAST(int_col AS CHAR), char_col) MySQ

  • Python数据合并的concat函数与merge函数详解

    目录 一.concat函数 1)横向堆叠与外连接 2) 纵向堆叠与内链接 二.merge()函数 1)根据行索引合并数据 2)合并重叠数据 一.concat函数 1.concat()函数可以沿着一条轴将多个对象进行堆叠,其使用方式类似数据库中的数据表合并pandas.concat(objs, axis=0, join=’outer’, join_axes=None, ignore_index=False, keys=None, levels=None, verify_integrity=Fals

  • MySQL中的CONCAT函数使用教程

    使用MySQL CONCAT()函数将两个字符串连接起来,形成一个单一的字符串.试试下面的例子: mysql> SELECT CONCAT('FIRST ', 'SECOND'); +----------------------------+ | CONCAT('FIRST ', 'SECOND') | +----------------------------+ | FIRST SECOND | +----------------------------+ 1 row in set (0.00

  • 浅谈mysql中concat函数,mysql在字段前/后增加字符串

    MySQL中concat函数 使用方法: CONCAT(str1,str2,-) 返回结果为连接参数产生的字符串.如有任何一个参数为NULL ,则返回值为 NULL. 注意: 如果所有参数均为非二进制字符串,则结果为非二进制字符串. 如果自变量中含有任一二进制字符串,则结果为一个二进制字符串. 一个数字参数被转化为与之相等的二进制字符串格式:若要避免这种情况,可使用显式类型 cast, 例如: SELECT CONCAT(CAST(int_col AS CHAR), char_col) MySQ

  • SQL SERVER2012中新增函数之字符串函数CONCAT详解

    介绍 SQLSERVER 2012新增了两个字符串函数CONCAT和FORMAT.本文首先介绍一下CONCAT,CONCAT函数的作用是可以返回多个字符串拼接后的结果. CONCAT 函数最多可以连接255个字符变量,当调用这个函数的时候需要至少接收两个参数,参数类型不一定是字符串类型,也可以是可以隐式转换为字符串的类型比如int ,float等类型.只要符合sql 2012的能隐式转换为字符串的规则即可,当我们想把两个值类型的数据连接起来的时候,不需要先将它们转为nvarchar然后再通过"+

  • pandas dataframe 中的explode函数用法详解

    在使用 pandas 进行数据分析的过程中,我们常常会遇到将一行数据展开成多行的需求,多么希望能有一个类似于 hive sql 中的 explode 函数. 这个函数如下: Code # !/usr/bin/env python # -*- coding:utf-8 -*- # create on 18/4/13 import pandas as pd def dataframe_explode(dataframe, fieldname): temp_fieldname = fieldname

  • 详解MySQL拼接函数CONCAT的使用心得

    前几篇文章给大家介绍了MySQL中的替换函数(Replace).切分函数(SubString),今天我们一起来看看MySQL专业拼接"字符串"的函数:concat.老规矩,有好的建议和想法,记得写到评论中,等我上班摸鱼时,跟大家一起吃瓜~ 一.concat函数相关的几种用法 1-1.函数:concat(str1,str2,-) concat 函数一般用在SELECT 查询语法中,用于修改返回字段内容,例如有张LOL英雄信息表如下 mysql> select * from `LOL

  • pandas应用实例之pivot函数详解

    目录 1.pivot函数的定义 2.pivot函数的说明 3.pivo函数的参数 4.pivot函数实例 5.pivot函数在实际工作中解决的案例 总结 1.pivot函数的定义 pivot(index=None,columns=None,values=None) -> DataFrame 2.pivot函数的说明 通过给定的索引(index)和列(column)的值重新生一个DataFrame对象. 根据列值对数据进行整形(生成一个“透视”表).从指定的索引/列中使用唯一的值来形成结果数据帧的

随机推荐