详解python实现识别手写MNIST数字集的程序

我们需要做的第⼀件事情是获取 MNIST 数据。如果你是⼀个 git ⽤⼾,那么你能够通过克隆这本书的代码仓库获得数据,实现我们的⽹络来分类数字

git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git
class Network(object):
def __init__(self, sizes):
self.num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
self.weights = [np.random.randn(y, x)
for x, y in zip(sizes[:-1], sizes[1:])]

在这段代码中,列表 sizes 包含各层神经元的数量。例如,如果我们想创建⼀个在第⼀层有2 个神经元,第⼆层有 3 个神经元,最后层有 1 个神经元的 Network 对象,我们应这样写代码:

net = Network([2, 3, 1])

Network 对象中的偏置和权重都是被随机初始化的,使⽤ Numpy 的 np.random.randn 函数来⽣成均值为 0,标准差为 1 的⾼斯分布。这样的随机初始化给了我们的随机梯度下降算法⼀个起点。在后⾯的章节中我们将会发现更好的初始化权重和偏置的⽅法,但是⽬前随机地将其初始化。注意 Network 初始化代码假设第⼀层神经元是⼀个输⼊层,并对这些神经元不设置任何偏置,因为偏置仅在后⾯的层中⽤于计算输出。有了这些,很容易写出从⼀个 Network 实例计算输出的代码。我们从定义 S 型函数开始:

def sigmoid(z):
return 1.0/(1.0+np.exp(-z))

注意,当输⼊ z 是⼀个向量或者 Numpy 数组时,Numpy ⾃动地按元素应⽤ sigmoid 函数,即以向量形式。

我们然后对 Network 类添加⼀个 feedforward ⽅法,对于⽹络给定⼀个输⼊ a,返回对应的输出 6 。这个⽅法所做的是对每⼀层应⽤⽅程 (22):

def feedforward(self, a):
"""Return the output of the network if "a" is input."""
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a

当然,我们想要 Network 对象做的主要事情是学习。为此我们给它们⼀个实现随即梯度下降算法的 SGD ⽅法。代码如下。其中⼀些地⽅看似有⼀点神秘,我会在代码后⾯逐个分析

def SGD(self, training_data, epochs, mini_batch_size, eta,
test_data=None):
"""Train the neural network using mini-batch stochastic
gradient descent. The "training_data" is a list of tuples
"(x, y)" representing the training inputs and the desired
outputs. The other non-optional parameters are
self-explanatory. If "test_data" is provided then the
network will be evaluated against the test data after each
epoch, and partial progress printed out. This is useful for
tracking progress, but slows things down substantially."""
if test_data: n_test = len(test_data)
n = len(training_data)
for j in xrange(epochs):
random.shuffle(training_data)
mini_batches = [
training_data[k:k+mini_batch_size]
for k in xrange(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
print "Epoch {0}: {1} / {2}".format(
j, self.evaluate(test_data), n_test)
else:
print "Epoch {0} complete".format(j)

training_data 是⼀个 (x, y) 元组的列表,表⽰训练输⼊和其对应的期望输出。变量 epochs 和mini_batch_size 正如你预料的——迭代期数量,和采样时的⼩批量数据的⼤⼩。 eta 是学习速率,η。如果给出了可选参数 test_data ,那么程序会在每个训练器后评估⽹络,并打印出部分进展。这对于追踪进度很有⽤,但相当拖慢执⾏速度。

在每个迭代期,它⾸先随机地将训练数据打乱,然后将它分成多个适当⼤⼩的⼩批量数据。这是⼀个简单的从训练数据的随机采样⽅法。然后对于每⼀个 mini_batch我们应⽤⼀次梯度下降。这是通过代码 self.update_mini_batch(mini_batch, eta) 完成的,它仅仅使⽤ mini_batch 中的训练数据,根据单次梯度下降的迭代更新⽹络的权重和偏置。这是update_mini_batch ⽅法的代码:

def update_mini_batch(self, mini_batch, eta):
"""Update the network's weights and biases by applying
gradient descent using backpropagation to a single mini batch.
The "mini_batch" is a list of tuples "(x, y)", and "eta"
is the learning rate."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.weights = [w-(eta/len(mini_batch))*nw
for w, nw in zip(self.weights, nabla_w)]
self.biases = [b-(eta/len(mini_batch))*nb
for b, nb in zip(self.biases, nabla_b)]

⼤部分⼯作由这⾏代码完成:

delta_nabla_b, delta_nabla_w = self.backprop(x, y)

这⾏调⽤了⼀个称为反向传播的算法,⼀种快速计算代价函数的梯度的⽅法。因此update_mini_batch 的⼯作仅仅是对 mini_batch 中的每⼀个训练样本计算梯度,然后适当地更新 self.weights 和 self.biases 。我现在不会列出 self.backprop 的代码。我们将在下章中学习反向传播是怎样⼯作的,包括self.backprop 的代码。现在,就假设它按照我们要求的⼯作,返回与训练样本 x 相关代价的适当梯度

完整的程序

"""
network.py
~~~~~~~~~~

A module to implement the stochastic gradient descent learning
algorithm for a feedforward neural network. Gradients are calculated
using backpropagation. Note that I have focused on making the code
simple, easily readable, and easily modifiable. It is not optimized,
and omits many desirable features.
"""

#### Libraries
# Standard library
import random

# Third-party libraries
import numpy as np

class Network(object):

 def __init__(self, sizes):
  """The list ``sizes`` contains the number of neurons in the
  respective layers of the network. For example, if the list
  was [2, 3, 1] then it would be a three-layer network, with the
  first layer containing 2 neurons, the second layer 3 neurons,
  and the third layer 1 neuron. The biases and weights for the
  network are initialized randomly, using a Gaussian
  distribution with mean 0, and variance 1. Note that the first
  layer is assumed to be an input layer, and by convention we
  won't set any biases for those neurons, since biases are only
  ever used in computing the outputs from later layers."""
  self.num_layers = len(sizes)
  self.sizes = sizes
  self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
  self.weights = [np.random.randn(y, x)
      for x, y in zip(sizes[:-1], sizes[1:])]

 def feedforward(self, a):
  """Return the output of the network if ``a`` is input."""
  for b, w in zip(self.biases, self.weights):
   a = sigmoid(np.dot(w, a)+b)
  return a

 def SGD(self, training_data, epochs, mini_batch_size, eta,
   test_data=None):
  """Train the neural network using mini-batch stochastic
  gradient descent. The ``training_data`` is a list of tuples
  ``(x, y)`` representing the training inputs and the desired
  outputs. The other non-optional parameters are
  self-explanatory. If ``test_data`` is provided then the
  network will be evaluated against the test data after each
  epoch, and partial progress printed out. This is useful for
  tracking progress, but slows things down substantially."""
  if test_data: n_test = len(test_data)
  n = len(training_data)
  for j in xrange(epochs):
   random.shuffle(training_data)
   mini_batches = [
    training_data[k:k+mini_batch_size]
    for k in xrange(0, n, mini_batch_size)]
   for mini_batch in mini_batches:
    self.update_mini_batch(mini_batch, eta)
   if test_data:
    print "Epoch {0}: {1} / {2}".format(
     j, self.evaluate(test_data), n_test)
   else:
    print "Epoch {0} complete".format(j)

 def update_mini_batch(self, mini_batch, eta):
  """Update the network's weights and biases by applying
  gradient descent using backpropagation to a single mini batch.
  The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
  is the learning rate."""
  nabla_b = [np.zeros(b.shape) for b in self.biases]
  nabla_w = [np.zeros(w.shape) for w in self.weights]
  for x, y in mini_batch:
   delta_nabla_b, delta_nabla_w = self.backprop(x, y)
   nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
   nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
  self.weights = [w-(eta/len(mini_batch))*nw
      for w, nw in zip(self.weights, nabla_w)]
  self.biases = [b-(eta/len(mini_batch))*nb
      for b, nb in zip(self.biases, nabla_b)]

 def backprop(self, x, y):
  """Return a tuple ``(nabla_b, nabla_w)`` representing the
  gradient for the cost function C_x. ``nabla_b`` and
  ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
  to ``self.biases`` and ``self.weights``."""
  nabla_b = [np.zeros(b.shape) for b in self.biases]
  nabla_w = [np.zeros(w.shape) for w in self.weights]
  # feedforward
  activation = x
  activations = [x] # list to store all the activations, layer by layer
  zs = [] # list to store all the z vectors, layer by layer
  for b, w in zip(self.biases, self.weights):
   z = np.dot(w, activation)+b
   zs.append(z)
   activation = sigmoid(z)
   activations.append(activation)
  # backward pass
  delta = self.cost_derivative(activations[-1], y) * \
   sigmoid_prime(zs[-1])
  nabla_b[-1] = delta
  nabla_w[-1] = np.dot(delta, activations[-2].transpose())
  # Note that the variable l in the loop below is used a little
  # differently to the notation in Chapter 2 of the book. Here,
  # l = 1 means the last layer of neurons, l = 2 is the
  # second-last layer, and so on. It's a renumbering of the
  # scheme in the book, used here to take advantage of the fact
  # that Python can use negative indices in lists.
  for l in xrange(2, self.num_layers):
   z = zs[-l]
   sp = sigmoid_prime(z)
   delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
   nabla_b[-l] = delta
   nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
  return (nabla_b, nabla_w)

 def evaluate(self, test_data):
  """Return the number of test inputs for which the neural
  network outputs the correct result. Note that the neural
  network's output is assumed to be the index of whichever
  neuron in the final layer has the highest activation."""
  test_results = [(np.argmax(self.feedforward(x)), y)
      for (x, y) in test_data]
  return sum(int(x == y) for (x, y) in test_results)

 def cost_derivative(self, output_activations, y):
  """Return the vector of partial derivatives \partial C_x /
  \partial a for the output activations."""
  return (output_activations-y)

#### Miscellaneous functions
def sigmoid(z):
 """The sigmoid function."""
 return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
 """Derivative of the sigmoid function."""
 return sigmoid(z)*(1-sigmoid(z))
"""
mnist_loader
~~~~~~~~~~~~

A library to load the MNIST image data. For details of the data
structures that are returned, see the doc strings for ``load_data``
and ``load_data_wrapper``. In practice, ``load_data_wrapper`` is the
function usually called by our neural network code.
"""

#### Libraries
# Standard library
import cPickle
import gzip

# Third-party libraries
import numpy as np

def load_data():
 """Return the MNIST data as a tuple containing the training data,
 the validation data, and the test data.

 The ``training_data`` is returned as a tuple with two entries.
 The first entry contains the actual training images. This is a
 numpy ndarray with 50,000 entries. Each entry is, in turn, a
 numpy ndarray with 784 values, representing the 28 * 28 = 784
 pixels in a single MNIST image.

 The second entry in the ``training_data`` tuple is a numpy ndarray
 containing 50,000 entries. Those entries are just the digit
 values (0...9) for the corresponding images contained in the first
 entry of the tuple.

 The ``validation_data`` and ``test_data`` are similar, except
 each contains only 10,000 images.

 This is a nice data format, but for use in neural networks it's
 helpful to modify the format of the ``training_data`` a little.
 That's done in the wrapper function ``load_data_wrapper()``, see
 below.
 """
 f = gzip.open('../data/mnist.pkl.gz', 'rb')
 training_data, validation_data, test_data = cPickle.load(f)
 f.close()
 return (training_data, validation_data, test_data)

def load_data_wrapper():
 """Return a tuple containing ``(training_data, validation_data,
 test_data)``. Based on ``load_data``, but the format is more
 convenient for use in our implementation of neural networks.

 In particular, ``training_data`` is a list containing 50,000
 2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray
 containing the input image. ``y`` is a 10-dimensional
 numpy.ndarray representing the unit vector corresponding to the
 correct digit for ``x``.

 ``validation_data`` and ``test_data`` are lists containing 10,000
 2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional
 numpy.ndarry containing the input image, and ``y`` is the
 corresponding classification, i.e., the digit values (integers)
 corresponding to ``x``.

 Obviously, this means we're using slightly different formats for
 the training data and the validation / test data. These formats
 turn out to be the most convenient for use in our neural network
 code."""
 tr_d, va_d, te_d = load_data()
 training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]
 training_results = [vectorized_result(y) for y in tr_d[1]]
 training_data = zip(training_inputs, training_results)
 validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]
 validation_data = zip(validation_inputs, va_d[1])
 test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]
 test_data = zip(test_inputs, te_d[1])
 return (training_data, validation_data, test_data)

def vectorized_result(j):
 """Return a 10-dimensional unit vector with a 1.0 in the jth
 position and zeroes elsewhere. This is used to convert a digit
 (0...9) into a corresponding desired output from the neural
 network."""
 e = np.zeros((10, 1))
 e[j] = 1.0
 return e
# test network.py "cost function square func"
import mnist_loader
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
import network
net = network.Network([784, 10])
net.SGD(training_data, 5, 10, 5.0, test_data=test_data)

原英文查看:http://neuralnetworksanddeeplearning.com/chap1.html

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python MNIST手写识别数据调用API的方法

    MNIST数据集比较小,一般入门机器学习都会采用这个数据集来训练 下载地址:yann.lecun.com/exdb/mnist/ 有4个有用的文件: train-images-idx3-ubyte: training set images train-labels-idx1-ubyte: training set labels t10k-images-idx3-ubyte: test set images t10k-labels-idx1-ubyte: test set labels The t

  • 详解python实现识别手写MNIST数字集的程序

    我们需要做的第⼀件事情是获取 MNIST 数据.如果你是⼀个 git ⽤⼾,那么你能够通过克隆这本书的代码仓库获得数据,实现我们的⽹络来分类数字 git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git class Network(object): def __init__(self, sizes): self.num_layers = len(sizes) self.sizes = sizes sel

  • Python实现识别手写数字 Python图片读入与处理

    写在前面 在上一篇文章Python徒手实现手写数字识别-大纲中,我们已经讲过了我们想要写的全部思路,所以我们不再说全部的思路. 我这一次将图片的读入与处理的代码写了一下,和大纲写的过程一样,这一段代码分为以下几个部分: 读入图片: 将图片读取为灰度值矩阵: 图片背景去噪: 切割图片,得到手写数字的最小矩阵: 拉伸/压缩图片,得到标准大小为100x100大小矩阵: 将图片拉为1x10000大小向量,存入训练矩阵中. 所以下面将会对这几个函数进行详解. 代码分析 基础内容 首先我们现在最前面定义基础

  • Python实现识别手写数字大纲

    写在前面 其实我之前写过一个简单的识别手写数字的程序,但是因为逻辑比较简单,而且要求比较严苛,是在50x50大小像素的白底图上手写黑色数字,并且给的训练材料也不够多,导致准确率只能五五开.所以这一次准备写一个加强升级版的,借此来提升我对Python处理文件与图片的能力. 这次准备加强难度: 被识别图片可以是任意大小: 不一定是白底图,只要数字颜色是黑色,周围环境是浅色就行: 加强识别手写数字的逻辑,提升准确率. 因为我还没开始正式写,并且最近专业课程学习也比较紧迫,所以可能更新的比较慢.不过放心

  • python实现识别手写数字 python图像识别算法

    写在前面 这一段的内容可以说是最难的一部分之一了,因为是识别图像,所以涉及到的算法会相比之前的来说比较困难,所以我尽量会讲得清楚一点. 而且因为在编写的过程中,把前面的一些逻辑也修改了一些,将其变得更完善了,所以一切以本篇的为准.当然,如果想要直接看代码,代码全部放在我的GitHub中,所以这篇文章主要负责讲解,如需代码请自行前往GitHub. 本次大纲 上一次写到了数据库的建立,我们能够实时的将更新的训练图片存入CSV文件中.所以这次继续往下走,该轮到识别图片的内容了. 首先我们需要从文件夹中

  • Python实现识别手写数字 简易图片存储管理系统

    写在前面 上一篇文章Python实现识别手写数字-图像的处理中我们讲了图片的处理,将图片经过剪裁,拉伸等操作以后将每一个图片变成了1x10000大小的向量.但是如果只是这样的话,我们每一次运行的时候都需要将他们计算一遍,当图片特别多的时候会消耗大量的时间. 所以我们需要将这些向量存入一个文件当中,每次先看看图库中有没有新增的图片,如果有新增的图片,那么就将新增的图片变成1x10000向量再存入文件之中,然后从文件中读取全部图片向量即可.当图库中没有新增图片的时候,那么就直接调用文件中的图片向量进

  • 详解Python验证码识别

    以前写过一个刷校内网的人气的工具,Java的(以后再也不行Java程序了),里面用到了验证码识别,那段代码不是我自己写的:-) 校内的验证是完全单色没有任何干挠的验证码,识别起来比较容易,不过从那段代码中可以看到基本的验证码识别方式.这几天在写一个程序的时候需要识别验证码,因为程序是Python写的自然打算用Python进行验证码的识别. 以前没用Python处理过图像,不太了解PIL(Python Image Library)的用法,这几天看了看PIL,发现它太强大了,简直和ImageMagi

  • Python Opencv使用ann神经网络识别手写数字功能

    opencv中也提供了一种类似于Keras的神经网络,即为ann,这种神经网络的使用方法与Keras的很接近.关于mnist数据的解析,读者可以自己从网上下载相应压缩文件,用python自己编写解析代码,由于这里主要研究knn算法,为了图简单,直接使用Keras的mnist手写数字解析模块.本次代码运行环境为:python 3.6.8opencv-python 4.4.0.46opencv-contrib-python 4.4.0.46 下面的代码为使用ann进行模型的训练: from kera

  • 详解python中的线程

    Python中创建线程有两种方式:函数或者用类来创建线程对象. 函数式:调用 _thread 模块中的start_new_thread()函数来产生新线程. 类:创建threading.Thread的子类来包装一个线程对象. 1.线程的创建 1.1 通过thread类直接创建 import threading import time def foo(n): time.sleep(n) print("foo func:",n) def bar(n): time.sleep(n) prin

  • caffe的python接口之手写数字识别mnist实例

    目录 引言 一.数据准备 二.导入caffe库,并设定文件路径 二.生成配置文件 三.生成参数文件solver 四.开始训练模型 五.完成的python文件 引言 深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 视觉层及参数 solver配置文件及参数 一.数据准备 官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片.因此有些

  • Python与人工神经网络:使用神经网络识别手写图像介绍

    人体的视觉系统是一个相当神奇的存在,对于下面的一串手写图像,可以毫不费力的识别出他们是504192,轻松到让人都忘记了其实这是一个复杂的工作. 实际上在我们的大脑的左脑和右脑的皮层都有一个第一视觉区域,叫做V1,里面有14亿视觉神经元.而且,在我们识别上面的图像的时候,工作的不止有V1,还有V2.V3.V4.V5,所以这么一看,我们确实威武. 但是让计算机进行模式识别,就比较复杂了,主要困难在于我们如何给计算机描述一个数字9在图像上应该是怎样的,比如我们跟计算机说,9的上面是一个圈,下右边是1竖

随机推荐