tensorflow更改变量的值实例

如下所示:

from __future__ import print_function,division
import tensorflow as tf

#create a Variable
w=tf.Variable(initial_value=[[1,2],[3,4]],dtype=tf.float32)
x=tf.Variable(initial_value=[[1,1],[1,1]],dtype=tf.float32,validate_shape=False)

init_op=tf.global_variables_initializer()
update=tf.assign(x,[[1,2],[1,2]])

with tf.Session() as session:
 session.run(init_op)
 session.run(update)
 x=session.run(x)
 print(x)

实验结果:

[[ 1. 2.]
 [ 1. 2.]]

tensorflow使用assign(variable,new_value)来更改变量的值,但是真正作用在garph中,必须要调用gpu或者cpu运行这个更新过程。

session.run(update)

tensorflow不支持直接对变量进行赋值更改

from __future__ import print_function,division
import tensorflow as tf

#create a Variable
x=tf.Variable(initial_value=[[1,1],[1,1]],dtype=tf.float32,validate_shape=False)
x=[[1,3],[2,4]]
init_op=tf.global_variables_initializer()
update=tf.assign(x,[[1,2],[1,2]])
with tf.Session() as session:
 session.run(init_op)
 session.run(update)
 print(session.run(x))

error:

"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/assign_learn/assign_learn.py
Traceback (most recent call last):
 File "D:/pycharmprogram/tensorflow_learn/assign_learn/assign_learn.py", line 8, in <module>
 update=tf.assign(x,[[1,2],[1,2]])
 File "C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\ops\state_ops.py", line 271, in assign
 if ref.dtype._is_ref_dtype:
AttributeError: 'list' object has no attribute 'dtype'

Process finished with exit code 1

以上这篇tensorflow更改变量的值实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • tensorflow创建变量以及根据名称查找变量

    环境:Ubuntu14.04,tensorflow=1.4(bazel源码安装),Anaconda python=3.6 声明变量主要有两种方法:tf.Variable和 tf.get_variable,二者的最大区别是: (1) tf.Variable是一个类,自带很多属性函数:而 tf.get_variable是一个函数; (2) tf.Variable只能生成独一无二的变量,即如果给出的name已经存在,则会自动修改生成新的变量name; (3) tf.get_variable可以用于生成

  • Tensorflow 查看变量的值方法

    定义一个变量,直接输出会输出变量的属性,并不能输出变量值.那么怎么输出变量值呢?请看下面得意 import tensorflow as tf biases=tf.Variable(tf.zeros([2,3]))#定义一个2x3的全0矩阵 sess=tf.InteractiveSession()#使用InteractiveSession函数 biases.initializer.run()#使用初始化器 initializer op 的 run() 方法初始化 'biases' print(se

  • TensorFlow变量管理详解

    一.TensorFlow变量管理 1. TensorFLow还提供了tf.get_variable函数来创建或者获取变量,tf.variable用于创建变量时,其功能和tf.Variable基本是等价的.tf.get_variable中的初始化方法(initializer)的参数和tf.Variable的初始化过程也类似,initializer函数和tf.Variable的初始化方法是一一对应的,详见下表. tf.get_variable和tf.Variable最大的区别就在于指定变量名称的参数

  • tensorflow 获取变量&打印权值的实例讲解

    在使用tensorflow中,我们常常需要获取某个变量的值,比如:打印某一层的权重,通常我们可以直接利用变量的name属性来获取,但是当我们利用一些第三方的库来构造神经网络的layer时,存在一种情况:就是我们自己无法定义该层的变量,因为是自动进行定义的. 比如用tensorflow的slim库时: <span style="font-size:14px;">def resnet_stack(images, output_shape, hparams, scope=None

  • tensorflow更改变量的值实例

    如下所示: from __future__ import print_function,division import tensorflow as tf #create a Variable w=tf.Variable(initial_value=[[1,2],[3,4]],dtype=tf.float32) x=tf.Variable(initial_value=[[1,1],[1,1]],dtype=tf.float32,validate_shape=False) init_op=tf.gl

  • PHP list() 将数组中的值赋给变量的简单实例

    list() PHP list() 用一步操作把数组中的值赋给一些变量.同 array() 一样,list() 不是真正的函数,而是语言结构. 语法: void list( mixed var, mixed ... )注意: list() 仅能用于数字索引的数组并假定数字索引从 0 开始. 例子1: <?php $arr_age = array(18, 20, 25); list($wang, $li, $zhang) = $arr_age; echo $wang; //输出:18 echo $

  • tensorflow模型保存、加载之变量重命名实例

    话不多说,干就完了. 变量重命名的用处? 简单定义:简单来说就是将模型A中的参数parameter_A赋给模型B中的parameter_B 使用场景:当需要使用已经训练好的模型参数,尤其是使用别人训练好的模型参数时,往往别人模型中的参数命名方式与自己当前的命名方式不同,所以在加载模型参数时需要对参数进行重命名,使得代码更简洁易懂. 实现方法: 1).模型保存 import os import tensorflow as tf weights = tf.Variable(initial_value

  • vue更改数组中的值实例代码详解

    根据下标更改时 vm为新建的vue对象 ind为数组 第一个e为在数组ind中e索引位置 第二个e为更改为值e vm.$set(vm.ind,e,e) 常规更改 arr为数组 //添加 arr.push(1); //删除 arr.splice(*,*); //替换 arr.splice(*,*,*); splice方法 实例 例子 1 在本例中,我们将创建一个新数组,并向其添加一个元素: <script type="text/javascript"> var arr = n

  • tensorflow从ckpt和从.pb文件读取变量的值方式

    最近在学习tensorflow自带的量化工具的相关知识,其中遇到的一个问题是从tensorflow保存好的ckpt文件或者是保存后的.pb文件(这里的pb是把权重和模型保存在一起的pb文件)读取权重,查看量化后的权重是否变成整形. 因此将自己解决这个问题记录下来,为了下一次遇到时,可以有所参考,也希望给有需要的同学一个可能的参考. (1) 从保存的ckpt读取变量的值(以读取保存的第一个权重为例) from tensorflow.python import pywrap_tensorflow i

  • tensorflow模型继续训练 fineturn实例

    解决tensoflow如何在已训练模型上继续训练fineturn的问题. 训练代码 任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解. # -*- coding: utf-8 -*-) import tensorflow as tf # 声明占位变量x.y x = tf.placeholder("float", shape=[None, 1]) y = tf.placeholder("float", [None,

  • js中变量的连续赋值(实例讲解)

    今天遇到了一个连续赋值的经典案例,网友们给出的答案也是五花八门,看起来有些繁琐,我也来说说自己的看法. 下面就是这个经典案例: var a = {n: 1}: var b = a; a.x = a = {n: 2}: console.log(a); console.log(b); console.log(a.x); console.log(b.x): 我们先来看一下普通连续赋值,即:变量赋值的类型是数据类型值 var a=3; var b=a=5; console.log(a); console

  • angular $watch 一个变量的变化(实例讲解)

    废话不多说,直接上代码 $scope.$watch('custArea', function(newValue, oldValue) { angular.forEach(newValue, function(item, key) { if($scope.custArea.indexOf("000000") > -1){ // $scope.toastWarn("已选择中国大陆所有省市,其他值不可选"); $scope.custArea =["0000

随机推荐