Python 在OpenCV里实现仿射变换—坐标变换效果

在现实的图像操作软件中,经常碰到的不是给出放大多少倍,而是由用户在软件的界面上选择多大的区域,或者选择几个点,那么这样情况下,怎么样来计算出变换矩阵呢?从前面知道变换矩阵是2X3的矩阵,说明有六个未知数,又有中学的代数知识知道要解决六个未知数,那么方程组至少要联立三条方程,要准备三条方程的先决条件,就是要有三组坐标。因此,只要在用户选择的区域里找到三个不同点的坐标,就可以计算出变换矩阵。如果给出三组坐标[0, 0], [200, 0], [0, 200],通过变换之后新坐标是[0, 0], [128, 0], [0, 50],那用什么函数来计算这个矩阵呢?这是要使用OpenCV里的getAffineTransform函数。

下面通过例子来演示这个功能:

#python 3.7.4,opencv4.1
#蔡军生 https://blog.csdn.net/caimouse/article/details/51749579
#
import cv2
import numpy as np
#图片的路径
imgname = "img1.jpg"
#读取图片
image = cv2.imread(imgname, cv2.IMREAD_COLOR)
#图片的高度和宽度
h,w = image.shape[:2]
#从目标坐标计算出2X3的矩阵,然后调用warpAffine执行
src = np.array([[0, 0], [200, 0], [0, 200]], np.float32)
dst = np.array([[0, 0], [128, 0], [0, 50]], np.float32)
A1 = cv2.getAffineTransform(src, dst)
d1 = cv2.warpAffine(image, A1, (w, h), borderValue = 125)
#显示操作之后的图片
cv2.imshow("d1",d1)
#显示图像
cv2.imshow("image", image)
#等待用户输入,然后删除所有窗口
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

使用坐标变换的方法,可以不用知道中间是否先旋转,还是先平移的操作。

总结

以上所述是小编给大家介绍的Python 在OpenCV里实现仿射变换—坐标变换效果,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

(0)

相关推荐

  • 使用OpenCV实现仿射变换—旋转功能

    在前面实现了平移和缩放,还有一种常用的坐标变换,那就是旋转.比如拍摄的照片上传到电脑里,再打开时发现人的头在下面脚在上,这样肯定看不了,那么就需要把这个照片旋转180度才可以接受.由于旋转变换,都是绕着点进行运动的,首先要找到轴的位置,默认是原点(0,0),如果要指定点进行,那么要采用前面的平移操作,即是把图片移到这一点上,然后进行旋转,再把它平移回来,这样才可以完成.所以在这个操作过程里,就要多个矩阵进行操作了,先要进行平移矩阵相乘,再与旋转矩阵相乘,最后与反向平移矩阵相乘.旋转的操作都是使用

  • python-opencv颜色提取分割方法

    1.用于简单的对象检测.跟踪 2.简单前背景分割 #encoding:utf-8 #黄色检测 import numpy as np import argparse import cv2 image = cv2.imread('huang.png') color = [ ([0, 70, 70], [100, 255, 255])#黄色范围~这个是我自己试验的范围,可根据实际情况自行调整~注意:数值按[b,g,r]排布 ] #如果color中定义了几种颜色区间,都可以分割出来 for (lower

  • 使用OpenCV实现仿射变换—平移功能

    当我们打开一个图片编辑软件时,基本上都会提供几个操作:平移.缩放和旋转.特别目前在手机里拍照时,由于位置传感器的失灵,也许是软件的BUG,有一次我就遇到苹果手机不管怎么样竖放,或横放,它拍摄的照片就竖不起来,后来只有关机重启才解决.这样拍摄出来的照片,如果要改变方向,只能使用编辑功能了,进行旋转.因此,几何变换的功能,在现实生活里的需求必不可少. 为了理解这个几何的问题,可以来回忆一下初中的课本内容: 从这里可以看到平移的基本性质,有了这些概念之后,就要进入解释几何,平移的表达,比如往x轴移动1

  • Python+OpenCV图片局部区域像素值处理详解

    背景故事:我需要对一张图片做一些处理,是在图像像素级别上的数值处理,以此来反映图片中特定区域的图像特征,网上查了很多,大多关于opencv的应用教程帖子基本是停留在打开图片,提取像素重新写入图片啊之类的基本操作,我是要取图片中的特定区域再提取它的像素值,作为一个初学者开始接触opencv简直一脸懵,慢慢摸索着知道了opencv的一些函数是可以实现的像SetImageROI()函数设置ROI区域,即感兴趣区域,就很好用啊,总之最后是实现了自己想要的功能.现在看个程序确实是有点挫,也有好多多余的没必

  • 使用OpenCV实现仿射变换—缩放功能

    前面介绍怎么样实现平移的功能,接着下来演示缩放功能.比如在一个文档里插入一个图片,发现这个图片占用太大的面积了,要把它缩小,才放得下,与文字的比例才合适.这样的需求,就需要使用仿射变换的缩放功能,而实现这个功能的方法,就是采用齐次坐标的变换功式: 可看到最后一条公式,就是缩放公式,要实现二维图像的缩放,需要构造前面那个缩放矩阵,因此在OpenCV也是构造一个2X3的矩阵.不过,在缩放变换里,要考虑另外一个问题,比如图片放大之后,原来两点像素的距离变大了,在中间留下了空间,那么中间空白的像素点怎么

  • python在OpenCV里实现投影变换效果

    前面学习了仿射变换,是经常使用到的变换,也很容易理解.在日常生活中,经常会遇到下面这种的情况: 仔细地观察比亚迪秦这台汽车的车牌,发现它拍照的角度不是垂直的方向,而是有一个角度,当要进行车牌识别的时候,发现字符是变形的,与电脑里比较的图片肯定有区别,因此识别不出来.这时怎么办呢?就需要经过一个投影变换才可以把车牌号纠正过来,才能进入识别过程. 好吧,到这里认识到投影变换的感性认识了,那么你又会继续考虑下一个问题,在软件里怎么样计算呢,难道还是使用仿射变换的矩阵.从这里看一下,前面闽A比较大,后面

  • python openCV获取人脸部分并存储功能

    本文实例为大家分享了python openCV获取人脸部分并存储的具体代码,供大家参考,具体内容如下 #-*- coding:utf-8 -*- import cv2 import os import time import base64 import numpy as np save_path = 'E:\\opencv\\2018-04-24OpenCv\\RAR\\savetest' faceCascade = cv2.CascadeClassifier( './haarcascade_f

  • Python+OpenCV感兴趣区域ROI提取方法

    方法一:使用轮廓 步骤1 """src为原图""" ROI = np.zeros(src.shape, np.uint8) #感兴趣区域ROI proimage = src.copy() #复制原图 """提取轮廓""" proimage=cv2.cvtColor(proimage,cv2.COLOR_BGR2GRAY) #转换成灰度图 proimage=cv2.adaptiveThre

  • Python 在OpenCV里实现仿射变换—坐标变换效果

    在现实的图像操作软件中,经常碰到的不是给出放大多少倍,而是由用户在软件的界面上选择多大的区域,或者选择几个点,那么这样情况下,怎么样来计算出变换矩阵呢?从前面知道变换矩阵是2X3的矩阵,说明有六个未知数,又有中学的代数知识知道要解决六个未知数,那么方程组至少要联立三条方程,要准备三条方程的先决条件,就是要有三组坐标.因此,只要在用户选择的区域里找到三个不同点的坐标,就可以计算出变换矩阵.如果给出三组坐标[0, 0], [200, 0], [0, 200],通过变换之后新坐标是[0, 0], [1

  • Python在OpenCV里实现极坐标变换功能

    在中学里学习过直角坐标系,也叫做笛卡尔坐标系,它是正交坐标系,不过也学习过极坐标系,这种坐标系比较适合大炮发射的场合.极坐标系的定义如下: 在 平面内取一个定点O, 叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向).对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系. 极坐标很方便应用到雷达上面,因为雷达不断地转动,反射回来的波计算出距

  • python使用opencv实现马赛克效果示例

    本文实例讲述了python使用opencv实现马赛克效果.分享给大家供大家参考,具体如下: 最近要实现opencv视频打马赛克,在网上找了一下基本是C++的实现,好在原理一样,下面给出python实现. 原理和注意点,我都写在注释里了 import cv2 ##马赛克 def do_mosaic(frame, x, y, w, h, neighbor=9): """ 马赛克的实现原理是把图像上某个像素点一定范围邻域内的所有点用邻域内左上像素点的颜色代替,这样可以模糊细节,但是

  • python使用openCV遍历文件夹里所有视频文件并保存成图片

    如果你在文件夹里有很多视频,并且文件夹里还有文件夹,文件夹里的文件夹也有视频,怎么能逐个读取并且保存..所以我写了个代码用了os,walk,这个可以遍历所有文件夹里的文件和文件夹 import os import cv2 cut_frame = 250 # 多少帧截一次,自己设置就行 save_path = "C:\文献与资料\手持红外\图片" for root, dirs, files in os.walk(r"C:\文献与资料\手持红外"): # 这里就填文件夹

  • Python使用OPENCV的目标跟踪算法实现自动视频标注效果

    先上效果 1.首先,要使用opencv的目标跟踪算法,必须要有opencv环境 使用:opencv==4.4.0 和 opencv-contrib-python==4.4.0.46,lxml   这三个环境包. 也可以使用以下方法进行下载 : pip install opencv-python==4.4.0 pip install opencv-contrib-python==4.4.0.4 pip install lxml 2.使用方法: (1):英文状态下的 "s" 是进行标注 (

  • Python使用OpenCV实现虚拟缩放效果

    目录 介绍 要求 目标 构建 结论 介绍 OpenCV 彻底改变了整个图像处理领域.从图像分类到对象检测,我们不仅可以使用 OpenCV 库做一些很酷的事情,而且还可以构建一流的应用程序. 今天我们要实现一个有趣的东西,它是手机或电脑中的一种功能,即图像缩放.但在这里,它将是实时对帧上所需的图像进行虚拟缩放. 要求 对于这个项目,我们将使用 OpenCV 库和另一个名为 Cvzone 的库来使用虚拟缩放. CVZone 它是一个建立在 OpenCV 和 MediaPipe 之上的库.它使事情变得

  • Python调用OpenCV实现图像平滑代码实例

    主要讲解Python调用OpenCV实现图像平滑,包括四个算法:均值滤波.方框滤波.高斯滤波和中值滤波. 给图像增加噪声: import cv2 import numpy as np def test10(): img = cv2.imread("result.jpg", cv2.IMREAD_UNCHANGED) rows, cols, chn = img.shape # 加噪声 for i in range(5000): x = np.random.randint(0, rows)

  • python利用opencv如何实现答题卡自动判卷

    目录 1.设定答题卡模板 2.读取答题卡图像并对图像进行灰度化处理 3.高斯模糊图像去噪点 4.使用大津法二值分割图像 5.使用开运算去噪点 6.使用canny边缘检测算法 7.筛选答题区域轮廓,透视变换矫正目标区域 使用摄像头实时判卷部分 总结 1.设定答题卡模板 该图像为答题卡的答题区域,黑色边框是为了能够在各种环境中轻易的检测,左部分和上部分的黑色矩形,是为能够定位到答题选项的坐标而设置,同时题目数量为20×3共60道选择题,在进行批改试卷之前,需要手动输入该次考试的正确答案作为模板来对识

  • Python编程OpenCV和Numpy图像处理库实现图片去水印

    目录 OpenCV + Numpy 函数简介 色彩转换 PIL + itertools 大家好,我是小五 前一阵给大家分享了,Python如何给图片加水印.评论区就有小伙伴问,可不可使用Python去除图片水印的方法呢? 这个肯定有啊,不过由于图片水印的种类有很多,今天我们先讲最简单的一种. 即上图中的①类水印,这种水印存在白色背景上的文档里,水印是灰色,需要保留的文字是黑色. 这种通常可以进行简单的亮度/对比度转换,直到水印消失并降低亮度以进行补偿. 参考别人的方法,我发现可以用多种方法去除水

随机推荐